Free access
Issue
Vet. Res.
Volume 40, Number 6, November-December 2009
Number of page(s) 14
DOI http://dx.doi.org/10.1051/vetres/2009041
Published online 28 July 2009
How to cite this article Vet. Res. (2009) 40:59
References of  Vet. Res. (2009) 40:59
  1. Colijn E.O., Bloemraad M., Wensvoort G., An improved ELISA for the detection of serum antibodies directed against classical swine fever virus, Vet. Microbiol. (1997) 59:15–25 [CrossRef] [PubMed].
  2. Begon M., Bennet M., Bowers R.G., French N.P., Hazel S.M., Turner J., A clarification of transmission terms in host-microparasite models: numbers, densities and areas, Epidemiol. Infect. (2002) 129:147–153 [CrossRef] [PubMed].
  3. Bouma A., de Smit A.J., de Kluijver E.P., Terpstra C., Moormann R.J.M., Efficacy and stability of a subunit vaccine based on glycoprotein E2 of classical swine fever virus, Vet. Microbiol. (1999) 66:101–114 [CrossRef] [PubMed].
  4. De Jong M.C., Kimman T.G., Experimental quantification of vaccine-induced reduction in virus transmission, Vaccine (1994) 12:761–766 [CrossRef] [PubMed].
  5. De Smit A.J., Bouma A., De Kluijver E.P., Terpstra C., Moormann R.J.M., Prevention of transplacental transmission of moderate-virulent classical swine fever virus after single or double vaccination with an E2 subunit vaccine, Vet. Q. (2000) 22:150–153 [PubMed].
  6. Dewulf J., Koenen F., Mintiens K., Denis P., Ribbens S., De Kruif A., Analytical performance of several classical swine fever laboratory diagnostic techniques on live animals for detection of infection, J. Virol. Methods (2004) 119:137–143 [CrossRef] [PubMed].
  7. Diekmann O., Heesterbeek J.A.P., Mathematical epidemiology of infectious diseases: model building, analysis and interpretation, John Wiley and Sons, Chichester, 2000.
  8. Durand B., Davila S., Cariolet R., Mesple`de A., Le Potier M.F., Comparison of viraemia- and clinicalbased estimates of within- and between-pen transmission of classical swine fever virus from three transmission experiments, Vet. Microbiol. (2009) 135:196–204 [CrossRef] [PubMed].
  9. Finney D.J., Statistical methods in biological assay, Charles Griffin & Company Ltd., London, 1978, pp. 394–401.
  10. Greiser-Wilke I., Fritzemeier J., Koenen F., Vanderhallen H., Rutili D., De Mia G.M., et al., Molecular epidemiology of a large classical swine fever epidemic in the European Union in 1997–1998, Vet. Microbiol. (2000) 77:17–27 [CrossRef] [PubMed].
  11. Keeling M.J., Rohani P., Modeling infectious diseases in humans and animals, Princeton University Press, 2008.
  12. Kaden V., Lange E., Polster U., Klopfleisch R., Teifke J.P., Studies on the virulence of two field isolates of the classical Swine Fever virus genotype 2.3 Rostock in wild boars of different age groups, J. Vet. Med. B Infect. Dis. Vet. Public Health (2004) 51:202–208 [PubMed].
  13. Klinkenberg D., De Bree J., Laevens H., De Jong M.C.M., Within- and between-pen transmission of classical swine fever virus: a new method to estimate the basic reproduction ratio from transmission experiments, Epidemiol. Infect. (2002) 128:293–299 [CrossRef] [PubMed].
  14. Laevens H., Koenen F., Deluyker H., Berkvens D., De Kruif A., An experimental infection with classical swine fever virus in weaner pigs. I. Transmission of the virus, course of the disease, and antibody response, Vet. Q. (1998) 2:41–45.
  15. Laevens H., Koenen F., Deluyker H., De Kruif A., Experimental infection of slaughter pigs with classical swine fever virus: transmission of the virus, course of the disease and antibody response, Vet. Rec. (1999) 145:243–248 [PubMed].
  16. Meuwissen M.P., Horst S.H., Huirne R.B., Dijkhuizen A.A., A model to estimate the financial consequences of classical swine fever outbreaks: principles and outcomes, Prev. Vet. Med. (1999) 42:249–270 [CrossRef] [PubMed].
  17. Mittelholzer C., Moser C., Tratschin J., Hofmann M.A., Analysis of classical swine fever virus replication kinetics allows differentiation of highly virulent from avirulent strains, Vet. Microbiol. (2000) 74:293–308 [CrossRef] [PubMed].
  18. Oude Ophuis R.J.A., Morrissy C.J., Boyle D.B., Detection and quantitative pathogenesis study of classical swine fever virus using a real time RT-PCR assay, J. Virol. Methods (2006) 131:78–85 [CrossRef] [PubMed].
  19. Ressang A.A., Studies on the pathogenesis of hog cholera. I. Demonstration of hog cholera virus subsequent to oral exposure, Zentralbl. Veterinarmed. B (1973) 20:256–271 [PubMed].
  20. Ribbens S., Dewulf J., Koenen F., Laevens H., Mintiens K., De Kruif A., An experimental infection (II) to investigate the importance of indirect classical swine fever virus transmission by excretions and secretions of infected weaner pigs, J. Vet. Med. B Infect. Dis. Vet. Public Health (2004) 51:438–442 [PubMed].
  21. Ribbens S., Dewulf J., Koenen F., Maes D., De Kruif A., Evidence of indirect transmission of classical swine fever virus through contacts with people, Vet. Rec. (2007) 160:687–690 [PubMed].
  22. Terpstra C., Bloemraad M., Gielkens A.L.J., The neutralizing peroxidase-linked assay for detection of antibody against swine fever virus, Vet. Microbiol. (1984) 9:113–120 [CrossRef] [PubMed].
  23. Uttenthal A., Le Potier M.F., Romero L., De Mia G.M., Floegel-Niesmann G., Classical swine fever (CSF) marker vaccine. Trial I. Challenge studies in weaner pigs, Vet. Microbiol. (2001) 83:85–106 [CrossRef] [PubMed].
  24. Uttenthal Å., Storgaard T., Oleksiewicz M.B., De Stricker K., Experimental infection with the Paderborn isolate of classical swine fever virus in 10-week-old pigs: determination of viral replication kinetics by quantitative RT-PCR, virus isolation and antigen ELISA, Vet. Microbiol. (2003) 92:197–212 [CrossRef] [PubMed].
  25. Van Oirschot J.T., Description of the virus infection, in: Liess B. (Ed.), Classical swine fever and related viral infections, Martinus Nijhoff Publishing, Dordrecht, 1988, pp. 1–25.
  26. Van Rijn P.A., Wellenberg G.J., Hakze-van der Honing R., Jacobs L., Moonen P.L., Feitsma H., Detection of economically important viruses in boar semen by quantitative RealTime PCR technology, J. Virol. Methods (2004) 120:151–160 [CrossRef] [PubMed].
  27. Wallinga J., Lipsitch M., How generation intervals shape the relationship between growth rates and reproductive numbers, Proc. Biol. Sci. (2007) 274:599–604 [CrossRef] [PubMed].
  28. Weesendorp E., Stegeman A., Loeffen W., Dynamics of virus excretion via different routes in pigs experimentally infected with classical swine fever virus strains of high, moderate or low virulence, Vet. Microbiol. (2009) 133:9–22 [CrossRef] [PubMed].
  29. Wensvoort G., Terpstra C., Boonstra J., Bloemraad M., Van Zaane D., Production of monoclonal antibodies against swine fever virus and their use in laboratory diagnosis, Vet. Microbiol. (1986) 12:101–108 [CrossRef] [PubMed].