Open Access
Issue
Vet. Res.
Volume 40, Number 4, July-August 2009
Number of page(s) 14
DOI http://dx.doi.org/10.1051/vetres/2009014
Published online 27 March 2009
How to cite this article Vet. Res. (2009) 40:31
References of  Vet. Res. (2009) 40:31
  1. Bannerman D.D., Paape M.J., Goff J.P., Kimura K., Lippolis J.D., Hope J.C., Innate immune response to intramammary infection with Serratia marcescens and Streptococcus uberis, Vet. Res. (2004) 35:681–700 [CrossRef] [PubMed] [EDP Sciences].
  2. Bannerman D.D., Paape M.J., Lee J., Wei Z., Xin H., Jayne C., Rainard P., Escherichia coli and Staphylococcus aureus elicit differential innate immune responses following intramammary infection, Clin. Diagn. Lab. Immunol. (2004) 11:463–472 [CrossRef] [PubMed].
  3. Blum J.W., Dosogne H., Hoeben D., Vangroenweghe F., Hammon H.M., Bruckmaier R.M., Burvenich C., Tumor necrosis factor-alpha and nitrite/nitrate responses during acute mastitis induced by Escherichia coli infection and endotoxin in dairy cows, Domest. Anim. Endocrinol. (2000) 19:223–235 [CrossRef] [PubMed].
  4. Bolstad B.M., Irizarry R.A., Astrand M., Speed T.P., A comparison of normalization methods for high density oligonucleotide array data based on variance and bias, Bioinformatics (2003) 19:185–193 [CrossRef] [PubMed].
  5. Bolstad B.M., Collin F., Brettschneider J., Simpson K., Cope L., Irizarry R.A., Speed T.P., Quality assessment of Affymetrix GeneChip data, in: Gentleman R., Carey V., Huber W., Irizarry R., Dudoit S. (Eds.), Quality assessment of Affymetrix GeneChip data in bioinformatics and computational biology solutions using R and Bioconductor, Chapter 3, Springer, 2005.
  6. Burvenich C., Paape M.J., Hill A.W., Guidry A.J., Miller R.H., Heyneman R., et al., Role of the neutrophil leucocyte in the local and systemic ractions during experimentally induced E. coli mastitis in cows immediately after calving, Vet. Q. (1994) 16:45–50 [PubMed].
  7. Burvenich C., Van Merris V., Mehrzad J., Diez-Fraile A., Duchateau L., Severity of E. coli mastitis is mainly determined by cow factors, Vet. Res. (2003) 34:521–564 [CrossRef] [PubMed] [EDP Sciences].
  8. De Haas Y., Veerkamp R.F., Barkema H.W., Grohn Y.T., Schukken Y.H., Associations between pathogen-specific cases of clinical mastitis and somatic cell count patterns, J. Dairy Sci. (2004) 87:5–105.
  9. Dosogne H., Vangroenweghe F., Barrio B., Rainard P., Burvenich C., Decreased number and bactericidal activity against Staphylococcus aureus of the resident cells in milk of dairy cows during early lactation, J. Dairy Res. (2001) 68:539–549 [CrossRef] [PubMed].
  10. Erskine R.J., Eberhart R.J., Hutchinson L.J., Spencer S.B., Campbell M.A., Incidence and types of clinical mastitis in dairy herds with high and low somatic cell counts, J. Am. Vet. Med. Assoc. (1988) 192:761–765 [PubMed].
  11. Goldammer T., Zerbe H., Molenaar A., Schuberth H.J., Brunner R.M., Kata S.R., Seyfert H.M., Mastitis increases mammary mRNA abundance of beta-defensin 5, toll-like-receptor 2 (TLR2), and TLR4 but not TLR9 in cattle, Clin. Diagn. Lab. Immunol. (2004) 11:174–185 [CrossRef] [PubMed].
  12. Hensen S.M., Pavicic M.J., Lohuis J.A., de Hoog J.A., Poutrel B., Location of Staphylococcus aureus within the experimentally infected bovine udder and the expression of capsular polysaccharide type 5 in situ, J. Dairy Sci. (2000) 83:1966–1975 [PubMed].
  13. Huijps K., Lam T.J., Hogeveen H., Costs of mastitis: facts and perception, J. Dairy Res. (2008) 75:113–120 [PubMed].
  14. Kruger S., Brandt E., Klinger M., Kruger S., Kreft B., Interleukin-8 secretion of cortical tubular epithelial cells is directed to the basolateral environment and is not enhanced by apical exposure to Escherichia coli, Infect. Immun. (2000) 68:328–334 [CrossRef] [PubMed].
  15. Lahouassa H., Moussay E., Rainard P., Riollet C., Differential cytokine and chemokine responses of bovine mammary epithelial cells to Staphylococcus aureus and Escherichia coli, Cytokine (2007) 38:12–21 [CrossRef] [PubMed].
  16. Paape M.J., Shafer-Weaver K., Capuco A.V., Van Oostveldt K., Burvenich C., Immune surveillance of mammary tissue by phagocytic cells, Adv. Exp. Med. Biol. (2000) 480:259–277 [PubMed].
  17. Pareek R., Wellnitz O., Dorp R., Burton J., Kerr D., Immunorelevant gene expression in LPSchallenged bovine mammary epithelial cells, J. Appl. Genet. (2005) 46:171–177 [PubMed].
  18. Petzl W., Zerbe H., Gunther J., Yang W., Seyfert H.M., Nurnberg G., Schuberth H.J., Escherichia coli, but not Staphylococcus aureus triggers an early increased expression of factors contributing to the innate immune defense in the udder of the cow, Vet. Res. (2008) 39:18 [PubMed] [EDP Sciences].
  19. Rainard P., Riollet C., Poutrel B., Paape M.J., Phagocytosis and killing of Staphylococcus aureus by bovine neutrophils after priming by tumor necrosis factor-alpha and the des-arginine derivative of C5a, Am. J. Vet. Res. (2000) 61:951–959 [CrossRef] [PubMed].
  20. Rainard P., The complement in milk and defense of the bovine mammary gland against infections, Vet. Res. (2003) 34:647–670 [CrossRef] [PubMed] [EDP Sciences].
  21. Rainard P., Riollet C., Innate immunity of the bovine mammary gland, Vet. Res. (2006) 37:369–400 [CrossRef] [PubMed] [EDP Sciences].
  22. Riollet C., Rainard P., Poutrel B., Cells and cytokines in inflammatory secretions of bovine mammary gland, Adv. Exp. Med. Biol. (2000) 480:247–258 [PubMed].
  23. Riollet C., Rainard P., Poutrel B., Differential induction of complement fragment C5a and inflammatory cytokines during intramammary infections with Escherichia coli and Staphylococcus aureus, Clin. Diagn. Lab. Immunol. (2000) 7:161–167 [CrossRef] [PubMed].
  24. Seegers H., Fourichon C., Beaudeau F., Production effects related to mastitis and mastitis economics in dairy cattle herds, Vet. Res. (2003) 34:475–491 [CrossRef] [PubMed] [EDP Sciences].
  25. Sethi M.S., Tabel H., Bb fragment of bovine complement factor B: stimulation of the oxidative burst in bovine monocytes, Can. J. Vet. Res. (1990) 54:410–414 [PubMed].
  26. Sordillo L.M., Streicher K.L., Mammary gland immunity and mastitis susceptibility, J. Mammary Gland Biol. Neoplasia (2002) 7:135–146 [CrossRef] [PubMed].
  27. Storey J.D., A direct approach to false discovery rates under dependence, J. R. Stat. Soc. Ser. B (2002) 64:479–498 [CrossRef].
  28. Strandberg Y., Gray C., Vuocolo T., Donaldson., Broadway M., Tellam R., Lipopolysaccharide and lipoteichoic acid induce different innate immune responses in bovine mammary epithelial cells, Cytokine (2005) 31:72–86 [CrossRef] [PubMed].
  29. Swinkels J.M., Hogeveen H., Zadoks R.N., A partial budget model to estimate economic benefits of lactational treatment of subclinical Staphylococcus aureus mastitis, J. Dairy Sci. (2005) 88:4273–4287 [PubMed].
  30. Vangroenweghe F., Rainard P., Paape M., Duchateau L., Burvenich C., Increase of Escherichia coli inoculum doses induces faster innate immune response in primiparous cows, J. Dairy Sci. (2004) 87:4132–4144 [PubMed].
  31. Vanselow J., Yang W., Herrmann J., Zerbe H., Schuberth H.J., Petzl W., Tomek W., Seyfert H.M., DNA-remethylation around a STAT5-binding enhancer in the $\alpha$S1-casein promoter is associated with abrupt shut-down of $\alpha$S1-casein synthesis during acute mastitis, J. Mol. Endocrinol. (2006) 37:463–477 [CrossRef] [PubMed].
  32. Wilson D.J., Grohn Y.T., Bennett G.J., Gonzalez R.N., Schukken Y.H., Spatz J., Comparison of J5 vaccinates and controls for incidence, etiologic agent, clinical severity, and survival in the herd following naturally occurring cases of clinical mastitis, J. Dairy Sci. (2007) 90:4282–4288 [CrossRef] [PubMed].
  33. Wu Z.J., Irizarry R.A., Gentleman R., Martinez- Murillo F., Spencer F., A model-based background adjustment for oligonucleotide expression arrays, J. Am. Stat. Assoc. (2004) 99:909–917 [CrossRef].
  34. Yang W., Molenaar A., Kurts-Ebert B., Seyfert H.M., NF-kappaB factors are essential, but not the switch, for pathogen-related induction of the bovine beta-defensin 5-encoding gene in mammary epithelial cells, Mol. Immunol. (2006) 43:210–225 [CrossRef] [PubMed].
  35. Yang W., Zerbe H., Petzl W., Brunner R.M., Gunther J., Draing C., et al., Bovine TLR2 and TLR4 properly transduce signals from Staphylococcus aureus and E. coli, but S. aureus fails to both activate NF-kappaB in mammary epithelial cells and to quickly induce TNFalpha and interleukin-8 (CXCL8) expression in the udder, Mol. Immunol. (2008) 45:1385–1397 [CrossRef] [PubMed].