Free access
Review
Issue
Vet. Res.
Volume 40, Number 2, March-April 2009
Adaptative strategies of vector-borne pathogens to vectorial transmission
Number of page(s) 14
DOI http://dx.doi.org/10.1051/vetres:2008039
Published online 23 September 2008
How to cite this article Vet. Res. (2009) 40:01
References of  Vet. Res. (2009) 40:01
  1. Achtman M., Zurth K., Morelli G., Torrea G., Guiyoule A., Carniel E., Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis, Proc. Natl. Acad. Sci. USA (1999) 96:14043–14048 [CrossRef] [PubMed].
  2. Anderson S.H.,Williams E.S., Plague in a complex of white-tailed prairie dogs and associated small mammals in Wyoming, J. Wildl. Dis. (1997) 33:720–732 [PubMed].
  3. Anonymous, Ecology of infectious diseases in natural populations, Cambridge, Cambridge University Press, 1995.
  4. Bacot A.W., Martin C.J., Observations on the mechanism of the transmission of plague by fleas, J. Hyg. (Plague Suppl. III) (1914) 13:423–439.
  5. Baltazard M., Bahmanyar M., Mofidi C., Seydian B., Kurdistan plague focus, Bull. World Health Organ. (1952) 5:441–472 [PubMed].
  6. BaltazardM., Karimi Y., Eftekhari M., Chamsa M., Mollaret H.H., La conservation interépizootique de la peste en foyer invétéré hypothèses de travail, Bull. Soc. Pathol. Exot. (1963) 56:1230–1241.
  7. Barnes A.M., Ogden L.J., ArchibaldW.S., Campos E., Control of plague vectors on Peromyscus maniculatus by use of 2% carbaryl dust in bait stations, J. Med. Entomol. (1974) 11:83–87 [PubMed].
  8. Barnes A.M., Surveillance and control of bubonic plague in the United States, Symp. Zool. Soc. Lond. (1982) 50:237–270.
  9. Bazanova L.P., Maevskii M.P., The duration of the persistence of plague microbe in the body of flea Citellophilus tesquorum altaicus, Med. Parazitol. (Mosk.) (1996) 45–48 (in Russian).
  10. Bazanova L.P., Maevskii M.P., Khabarov A.V., An experimental study of the possibility for the preservation of the causative agent of plague in the nest substrate of the long-tailed suslik, Med.Parazitol.(Mosk.) (1997) 37–39 (in Russian).
  11. Bazanova L.P., Nikitin A., Maevskii M.P., Conservation of Yersinia pestis in winter by Citellophilus tesquorum altaicus females and males, Med. Parazitol. (Mosk.) (2007) 34–36 (in Russian).
  12. Bell J.F., The infection of ticks (Dermacentor variabilis) with Pasteurella tularensis, J. Infect. Dis. (1941) 76:83–95.
  13. Bibikova V.A., Contemporary views on the interrelationships between fleas and the pathogens of human and animal diseases, Annu. Rev. Entomol. (1977) 22:23–32 [CrossRef] [PubMed].
  14. Bizanov G., Dobrokhotova N.D., Experimental infection of ground squirrels (Citellus pygmaeus Pallas) with Yersinia pestis during hibernation, J. Infect. (2007) 54:198–203 [CrossRef] [PubMed].
  15. Brinkerhoff R.J., Markeson A.B., Knouft J.H., Gage K.L., Montenieri J.A., Abundance patterns of two Oropsylla (Certatophyllidae: Siphonaptera) species on black-tailed prairie dog (Cynomys ludovicianus) hosts, J. Vector Ecol. (2006) 31:355–363 [CrossRef] [PubMed].
  16. Brubaker R.R., The recent emergence of plague: a process of felonious evolution, Microb. Ecol. (2004) 47:293–299 [PubMed].
  17. Burroughs A.L., Sylvatic plague studies: The vector efficiency of nine species of fleas compared with Xenopsylla cheopis, J. Hyg. (1947) 43:371–396 [CrossRef].
  18. Cavanaugh D.C., Marshall J.D., The influence of climate on the seasonal prevalence of platue in the Republic of Vietnam, J. Wildl. Dis. (1972) 8:85–93 [PubMed].
  19. Collinge S.K., Johnson W.C., Ray C., Matchett R., Grensten J., Cully J.F., et al., Landscape structure and plague occurrence in black-tailed prairie dogs on grasslands of the western USA, Landscape Ecol. (2005) 20:941–955 [CrossRef].
  20. Cully J.F., Barnes A.M., Quan T.J., Maupin G., Dynamics of plague in a Gunnison's prairie dog colony complex from New Mexico, J. Wildl. Dis. (1997) 33:706–719 [PubMed].
  21. Darby C., Hsu J.W., Ghori N., Falkow S., Caenorhabditis elegans: plague bacteria biofilm blocks food intake, Nature (2002) 417:243–244 [CrossRef] [PubMed].
  22. Davis R.M., Smith R.T., Madon M.B., Sitko- Cleugh E., Flea, rodent, and plague ecology at Chuchupate campground, Ventura County, California, J. Vector Ecol. (2002) 27:107–127 [PubMed].
  23. Davis S., Begon M., De Bruyn L., Ageyev V.S., Klassovskiy N.L., Pole S.B., et al., Predictive thresholds for plague in Kazakhstan, Science (2004) 304:736–738 [CrossRef] [PubMed].
  24. Davis S., Klassovskiy N., Ageyev V., Suleimenov B., Atshabar B., Klassovskaya A., et al., Plague metapopulation dynamics in a natural reservoir: the burrow system as the unit of study, Epidemiol. Infect. (2007) 135:740–748 [CrossRef] [PubMed].
  25. Davis S., Trapman P., Leirs H., Begon M., Heesterbeek J.A., The abundance threshold for plague as a critical percolation phenomenon, Nature (2008) 454:634–637 [CrossRef] [PubMed].
  26. Domaradsky I.V., Is not plague a "protonosis"?, Med. Parazitol. (Mosk.) (1999) 2:10–13 [PubMed].
  27. Douglas J.R., Wheeler C.M., Sylvatic plague studies. II. The fate of Pasteurella pestis in the flea, J. Infect. Dis. (1943) 72:18–30.
  28. Drancourt M., Houhamdi L., Raoult D., Yersinia pestis as a telluric, human ectoparasite-borne organism, Lancet Infect. Dis. (2006) 6:234–241 [CrossRef] [PubMed].
  29. Du Y., Rosqvist R., Forsberg A., Role of fraction 1 antigen of Yersinia pestis in inhibition of phagocytosis, Infect. Immun. (2002) 70:1453–1460 [CrossRef] [PubMed].
  30. Eisen R.J., Bearden S.W.,Wilder A.P., Montenieri J.A., Antolin M.F., Gage K.L., Early-phase transmission of Yersinia pestis by unblocked fleas as a mechanism explaining rapidly spreading plague epizootics, Proc. Natl. Acad. Sci. USA (2006) 103:15380–15385 [CrossRef] [PubMed].
  31. Eisen R.J., Lowell J.L., Montenieri J.A., Bearden S.W., Gage K.L., Temporal dynamics of earlyphase transmission of Yersinia pestis by unblocked fleas: secondary infectious feeds prolong efficient transmission by Oropsylla montana (Siphonaptera: Ceratophyllidae), J. Med. Entomol. (2007) 44:672–677 [CrossRef] [PubMed].
  32. Eisen R.J., Wilder A.P., Bearden S.W., Montenieri J.A., Gage K.L., Early-phase transmission of Yersinia pestis by unblocked Xenoopsylla cheopis (Siphonaptera: Pulicidae) is as efficient as transmission by blocked fleas, J. Med. Entomol. (2007) 44: 678–682.
  33. Eisen R.J., Borchert J.N., Holmes J.L., Amatre G., Van Wyk K., Enscore R.E., et al., Earlyphase transmission of Yersinia pestis by cat fleas (Ctenocephalides felis) and their potential rolse as vectors in a plague endemic region of Uganda, Am. J. Trop. Med. Hyg. (2008) 949–956.
  34. Eisen R.J., Holmes J.L., Schotthoefer A.M., Vetter S.M., Montenieri J.A., Gage K.L., Demonstration of early-phase transmission of Yersinia pestis by the mouse flea, Aetheca wagneri, and implications for the role of deer mice as enzootic reservoirs, J. Med. Entomol. (2008) in press.
  35. Eisen R.J., Petersen J.M., Higgins C.L.,Wong D., Levy C.E., Mead P.S., et al., Persistence of Yersinia pestis in soil under natural conditions, Emerg. Infect. Dis. (2008) 14:941–943 [CrossRef] [PubMed].
  36. Eisen R.J., Vetter S.M., Holmes J.L., Bearden S.W., Montenieri J.A., Gage K.L., Source of host blood affectes prevalence of infection and bacterial loads of Yersinia pestis in fleas, J. Med. Entomol. (2008) 45:933–938 [CrossRef] [PubMed].
  37. Engelthaler D.M., Hinnebusch B.J., Rittner C.M., Gage K.L., Quantitative competitive PCR as a technique for exploring flea-Yersina pestis dynamics, Am. J. Trop. Med. Hyg. (2000) 62:552–560 [PubMed].
  38. Enscore R.E., Biggerstaff B.J., Brown T.L., Fulgham R.E., Reynolds P.J., Engelthaler D.M., et al., Modeling relationships between climate and the frequency of human plague cases in the southwestern United States, 1960-1997, Am. J. Trop. Med. Hyg. (2002) 66:186–196 [PubMed].
  39. Eskey C.R., Haas V.H., Plague in the western part of the United States, Bull. Publ. Health Soc. (Kuala Lumpur) (1940) 254:1–83.
  40. Fine P.E.M., Epidemiological principles of vector-mediated transmission, In: McKelvey J.J., Eldridge B.F., Maramorosch K. (Eds.), Vectors of disease agents: Interactions with plants, animals, and man, Praeger Publishers, New York, 1981.
  41. Gage K.L., Ostfeld R.S., Olson J.G., Nonviral vector-borne zoonoses associated with mammals in the United States, J. Mammal. (1995) 76:695–715 [CrossRef].
  42. Gage K.L., Kosoy M.Y., Natural history of plague: Perspectives from more than a century of research, Annu. Rev. Entomol. (2005) 50:505–528 [CrossRef] [PubMed].
  43. Garrett-Jones C., Schidrawi G.R., Malaria vectorial capacity of a population of Anopheles gambiae: An exercise in epidemiological entomology, Bull. World Health Organ. (1969) 40:531–545 [PubMed].
  44. Golov D.A., Ioff A.G., On the question of the role of rodent fleas in the southeastern part of the USSR and the epidemiology of plague, Proceedings of the first All-Russian Anti-Plague Conference Saratov (1928) 102–105.
  45. Gratz N., Rodent reservoirs and flea vectors of natural foci of plague, In: Plague manual: epidemiology, distribution, surveillance and control, World Health Organization, Geneva, 1999.
  46. Guinet F., Ave P., Jones L., Huerre M., Carniel E., Defective innate cell response and lymph node infiltration specify Yersinia pestis infection, PLoS ONE (2008) 3:e1688.
  47. Hinnebusch B.J., Perry R.D., Schwan T.G., Role of the Yersinia pestis hemin storage (hms) locus in the transmission of plague by fleas, Science (1996) 273:367–370 [CrossRef] [PubMed].
  48. Hinnebusch B.J., Bubonic plague: a molecular genetic case history of the emergence of an infectious disease, J. Mol. Med. (1997) 75:645–652 [CrossRef] [PubMed].
  49. Hinnebusch B.J., Rudolph A.E., Cherepanov P., Dixon J.E., Schwan T.G., Forsberg A., Role of Yersinia murine toxin in survival of Yersinia pestis in themidgut of the flea vector, Science (2002) 296:733–735 [CrossRef] [PubMed].
  50. Hinnebusch B.J., The evolution of flea-borne transmission in Yersinia pestis, Curr. Issues Mol. Biol. (2005) 7:197–212 [PubMed].
  51. Hirst L.F., The Conquest of Plague, Claredon Press, Oxford, 1953, 478 p.
  52. Holdenried R., Sylvatic plague studies: VII. Plague transmission potentials for the fleas Diamanus montanus and Polygnis gwyni compared with Xenopsylla cheopis, J. Infect. Dis. (1952) 90:131–140 [PubMed].
  53. Holdenried R., Morlan H.B., Plague-infected fleas from northern New Mexico wild rodents, J. Infect. Dis. (1955) 96:133–137 [PubMed].
  54. Hoogland J.L., Davis S., Benson-Amram S., Labruna D., Goossens B., Hoogland M.A., Pyraperm kills fleas and halts plague among Utah prairie dogs, Southwest. Nat. (2004) 49:376–383 [CrossRef].
  55. Hubbard C.A., Fleas of Western North America: Their relation to public health, The Iowa State College Press, Ames, Iowa, 1947, 533 p.
  56. Karimi P.Y., Conservation naturelle de la peste dans le sol, Bull. Soc. Pathol. Exot. Filiales (1963) 56:1183–1186 [PubMed].
  57. Kartman L., Prince F.M., Studies on Pasteurella pestis in fleas. V. The experimental plague-vector efficiency of wild rodent fleas compared with Xenopsylla cheopis, together with observations on the influence of temperature, Am. J. Trop. Med. Hyg. (1956) 5:1058–1070 [PubMed].
  58. Kartman L., Quan S.F., McManus A.G., Studies on Pasteurella pestis in Fleas. IV. Experimental blocking of Xenopsylla vexabilis hawaiiensis and Xenopsylla cheopis with an avirulent strain, Exp. Parasitol. (1956) 5:435–440 [CrossRef] [PubMed].
  59. Kartman L., Prince F.M., Quan S.F., Studies on Pasteurella pestis in fleas. VII. The plague-vector efficiency of Hystrichopsylla linsdalei compared with Xenopsylla cheopis under experimental conditions, Am. J. Trop. Med. Hyg. (1958) 7:317–322 [PubMed].
  60. Kartman L., Prince F.M., Quan S.F., Stark H.E., New knowledge on the ecology of sylvatic plague, Ann. NY Acad. Sci. (1958) 70:668–711 [CrossRef].
  61. Kartman L., Quan S.F., Lechleitner R.R., Die-off of a Gunnison's prairie dog colony in central Colorado II. Retrospective determination of plague infection in flea vectors, rodents and man, Zoonoses Res. (1962) 1:201–224 [PubMed].
  62. Keeling M.J., Gilligan C.A., Bubonic plague: a metapopulation model of a zoonosis, Proc. Biol. Sci. (2000) 267:2219–2230 [CrossRef] [PubMed].
  63. Keeling M.J., Gilligan C.A., Metapopulation dynamics of bubonic plague, Nature (2000) 407:903–906 [CrossRef] [PubMed].
  64. Krasnov B.R., Shenbrot G.I., Mouillot D., Khokhlova I.S., Poulin R., Ecological characteristics of flea species relate to their suitability as plague vectors, Oecologia (2006) 149:474–481 [CrossRef] [PubMed].
  65. Lahteenmaki K., Kukkonen M., Jaatinen S., Suomalainen M., Soranummi H., Virkola R., et al., Yersinia pestis Pla has multiple virulence-associated functions, Adv. Exp. Med. Biol. (2003) 529:141–145 [PubMed].
  66. Lang J.D., Rodent-flea-plague relationships at the higher elevations of San Diego County, California, J. Vector Ecol. (2004) 29:236–247 [PubMed].
  67. Laudisoit A., Leirs H., Makundi R.H., Van Dongen S., Davis S., Neerinckx S., et al., Plague and the human flea, Tanzania, Emerg. Infect. Dis. (2007) 13:687–693 [PubMed].
  68. Lechleitner R.R., Kartman L., Goldenberg M.I., Hudson B.W., An epizootic of plague in Gunnison's prairie dogs (Cynomys gunnisoni) in south-central Colorado, Ecology (1968) 49:734–743 [CrossRef].
  69. Levy C.E., Gage K.L., Plague in the United States, 1995–1997, Infect. Med. (1999) 16:54–64.
  70. Lorange E.A., Race B.L., Sebbane F., Hinnebusch B.J., Poor vector competence of fleas and the evolution of hypervirulence in Yersinia pestis, J. Infect. Dis. (2005) 191:1907–1912 [CrossRef] [PubMed].
  71. Macdonald G., Epidemiologic models in studies of vector-borne diseases, Public Health Rep. (1961) 76:753–764 [PubMed].
  72. Maevskii M.P., Bazanova L.P., Popkov A.F., The survival of the causative agent of plaque in the longtailed suslik from a Tuva natural focus in wintertime, Med. Parazitol. (Mosk.) (1999) 55–58 (in Russian).
  73. McCoy G.W., A note on squirrel fleas as plague carriers, Public Health Rep. (1910) 25:465 [PubMed].
  74. Meyer K.F., The modern outlook on plague in California, Bureau Vector Control, State Dept Public Health Calif. Vector Views (1955) 2:41–43.
  75. Mollaret H., Conservation du bacille de la peste durant 28 mois en terrier artificiel: demonstration experimentale de la conservation interepizootique de las peste dans ses foyers inveteres, C. R. Acad. Sci. Paris (1968) 267:972–973.
  76. Mollaret H., The causes of plague inveteration in its natural foci, Bull. Soc. Pathol. Exot. Filiales (1971) 64:713–717 [PubMed] (in French).
  77. Mollaret H.H., Experimental Preservation of Plague in Soil, Bull. Soc. Pathol. Exot. Filiales (1963) 56:1168–1182 [PubMed] (in French).
  78. Mollaret H.H., Remarks on the report of Messieurs Brygoo and Dodin apropos of telluric plague and of burrowing plague. Madagascan data, Bull. Soc. Pathol. Exot. Filiales (1965) 58:140–154 [PubMed] (in French).
  79. Mollaret H.H., New knowledge in the field of plague epidemiology, Med. Monatsschr. (1969) 23:338–344 [PubMed] (in German).
  80. Nelson B.C., Smith C.R., Ecological effects of a plague epizootic on the activities of rodents inhabiting caves a Lava Beds National Monument, California, J. Med. Entomol. (1976) 13:51–61 [PubMed].
  81. Nikul'shin S.V., Onatskaia T.G., Lukanina L.M., Bondarenko A.I., Associations of the soil amoeba Hartmannella rhysodes with the bacterial causative agents of plague and pseudotuberculosis in an experiment, Zh. Mikrobiol. Epidemiol. Immunobiol. (1992) 2–5 (in Russian).
  82. Oyston P.C., Isherwood K.E., The many and varied niches occupied by Yersinia pestis as an arthropod-vectored zoonotic pathogen, Antonie van Leeuwenhoek (2005) 87:171–177 [CrossRef] [PubMed].
  83. Parkhill J., Wren B.W., Thomson N.R., Titball R.W., Holden M.T., Prentice M.B., et al., Genome sequence of Yersinia pestis, the causative agent of plague, Nature (2001) 413:523–527 [CrossRef] [PubMed].
  84. Parmenter R.R., Yadav E.P., Parmenter C.A., Ettestad P., Gage K.L., Incidence of plague associated with increased winter-spring precipitation in New Mexico, Am. J. Trop. Med. Hyg. (1999) 61: 814–821.
  85. Perry R.D., Fetherston J.D., Yersinia pestis – etiologic agent of plague, Clin. Microbiol. Rev. (1997) 10:35–66 [PubMed].
  86. Poland J.D., Barnes A.M., Plague, In: Steele J.H. (Ed.), CRC Handbook Series in Zoonoses, Section A: Bacterial, rickettsial and mycotic diseases, Volume I, CRC Press Inc., Boca Raton, FL, 1979, pp. 515–559.
  87. Poland J.D., Quan T.J., Barnes A.M., Plague, In: Beran G.W. (Ed.), CRC Handbook Series in Zoonoses, Section A: Bacterial, Rickettsial, and Mycotic Diseases, CRC Press, Boca Raton, FL, 1994, pp. 93–112.
  88. Pollitzer R., Plague, World Health Organization Monograph Series No. 22, Geneva, Switzerland, 1954, 698 p.
  89. Pushkareva V.I., Experimental evaluation of interaction between Yersinia pestis and soil infusoria and possibility of prolonged preservation of bacteria in the protozoan oocysts, Zh. Mikrobiol. Epidemiol. Immunobiol. (2003) 40–44 (in Russian).
  90. Quan S.F., Burroughs A.L., Holdenried R., Meyer K.F., Studies on the prevention of experimental plague epizootics instituted among mice by infected fleas, Estratto dagli atti del VI Congresso Internazionale di Microbiologia (1953) 5:1–4.
  91. Quan S.F., Kartman L., Ecological studies of wild rodent plague in the San Franciso Bay Area of California VIII. Susceptibility of wild rodents to experimental plague infection, Zoonoses Res. (1962) 1:121–144 [PubMed].
  92. Salkeld D.J., Stapp P., No evidence of deer mouse involvement in plague (Yersinia pestis) epizootics of prairie dogs, Vector Borne Zoonotic Dis. (2008) 8:331–337 [CrossRef] [PubMed].
  93. Sebbane F., Gardner D., Long D., Gowen B.B., Hinnebusch B.J., Kinetics of disease progression and host response in a rat model of bubonic plague, Am. J. Pathol. (2005) 166:1427–1439 [PubMed].
  94. Seery D.B., Biggins D.E., Montenieri J.A., Enscore R.E., Tanda D.T., Gage K.L., Treatment of black-tailed prairie dog burrows with deltamethrin to control fleas (Insecta: Siphonaptera) and plague, J. Med. Entomol. (2003) 40:718–722 [PubMed].
  95. Sharets A.S., Berendyev S.A., Krasnikova L.V., Tristan D.F., Effectiveness of the one shot marmot control, Trudy Sredneaziatskogo Protivochumnogo Instituta Monograph, Almaty, Kazakhstan, 1958, pp. 145–147.
  96. Snall T., O'Hara R.B., Ray C., Collinge S.K., Climate-driven spatial dynamics of plague among prairie dog colonies, Am. Nat. (2008) 171:238–248 [CrossRef] [PubMed].
  97. Stapp P., Antolin M.F., Ball M., Patterns of extinction in prairie dog metapopulations: plague outbreaks follow El Nino events, Frontiers in Ecology and the Environment (2004) 2:235–240.
  98. Stapp P., Salkeld D.J., Eisen R.J., Pappert R., Young J., Carter L.G., et al., Exposure of small rodents to plague during epizootics in black-tailed prairie dogs, J. Wildl. Dis. (2008) 44:724–730 [PubMed].
  99. Stenseth N.C., Samia N.I., Viljugrein H., Kausrud K.L., Begon M., Davis S., et al., Plague dynamics are driven by climate variation, Proc. Natl. Acad. Sci. USA (2006) 103:13110–13115 [CrossRef] [PubMed].
  100. Suchkov Iu G., Khudiakov I.V., Emel'ianenko E.N., Levi M.I., Pushkareva V.I., Suchko I., et al., The possibility of preserving the causative agent of plague in soil in resting (nonculturable) form, Zh. Mikrobiol. Epidemiol. Immunobiol. (1997) 42–46 (in Russian).
  101. Titball R.W., Hill J., Lawton D.G., Brown K.A., Yersinia pestis and plague, Biochem. Soc. Trans. (2003) 31:104–107 [CrossRef] [PubMed].
  102. Verjbitski D.T., The part played by insects in the epidemiology of plague, J. Hyg. (1908) 8:162–208 [CrossRef].
  103. Webb C.T., Brooks C.P., Gage K.L., Antolin M.F., Classic flea-borne transmission does not drive plague epizootics in prairie dogs, Proc. Natl. Acad. Sci. USA (2006) 103:6236–6241 [CrossRef] [PubMed].
  104. Welkos S.L., Friedlander A.M., Davis K.J., Studies on the role of plasminogen activator in systemic infection by virulent Yersinia pestis strain C092, Microb. Pathog. (1997) 23:211–223 [CrossRef] [PubMed].
  105. Wheeler C.M., Douglas J.R., Sylvatic plague studies. V. The determination of vector efficiency, J. Infect. Dis. (1945) 77:1–12.
  106. Wilder A.P., Eisen R.J., Bearden S.W., Montenieri J.A., Gage K.L., Antolin M.F., Oropsylla hirsuta (Siphonaptera: Ceratophyllidae) can support plague epizootics in black-tailed prairie dogs (Cynomys ludovicianus) by early-phase transmission of Yersinia pestis, Vector Borne Zoonotic Dis. (2008) 8:359–367 [CrossRef] [PubMed].
  107. Wilder A.P., Eisen R.J., Bearden S.W., Montenieri J.A., Tripp D.T., Brinkerhoff R.J., Gage K.L., Antolin M.F., Transmission efficiency of two flea species (Oropsylla tuberculata cynomuris and Oropsylla hirsuta) involved in plague epizootics among prairie dogs, EcoHealth (2008) 5:205–212 [CrossRef].
  108. Wren B.W., The Yersiniae – a model genus to study the rapid evolution of bacterial pathogens, Nat. Rev. Microbiol. (2003) 1:55–64 [CrossRef] [PubMed].