Free access
Issue
Vet. Res.
Volume 39, Number 2, March-April 2008
Number of page(s) 12
DOI http://dx.doi.org/10.1051/vetres:2007047
Published online 21 December 2007
How to cite this article Vet. Res. (2008) 39:11
References of  Vet. Res. (2008) 39:11
  1. Akira S., Uematsu S., Takeuchi O., Pathogen recognition and innate immunity, Cell (2006) 124:783-801 [CrossRef] [PubMed].
  2. Alexopoulou L., Holt A.C., Medzhitov R., Flavell R.A., Recognition of double-stranded RNA and activation by toll-like receptor 3, Nature (2001) 413:732-738 [CrossRef] [PubMed].
  3. Bannerman D.D., Goldblum S.E., Mechanisms of bacterial lipopolysaccharide-induced endothelial apoptosis, Am. J. Physiol. Lung Cell. Mol. Physiol. (2003) 284:L899-L914 [PubMed].
  4. Bannerman D.D., Chockalingam A., Paape M.J., Hope J.C., The bovine innate immune response during experimentally-induced Pseudomonas aeruginosa mastitis, Vet. Immunol. Immunopathol. (2005) 107:201-205 [CrossRef] [PubMed].
  5. Barber G.N., Host defense, viruses and apopotosis, Cell Death Differ. (2001) 8:113-126 [CrossRef] [PubMed].
  6. Blander J.M., Medzhitov R., Regulation of phagosome maturation by signals from toll-like receptors, Science (2004) 304:1014-1018 [CrossRef] [PubMed].
  7. Boudjellab N., Chan-Tang H.S., Li X., Zhao X., Interleukin 8 response by bovine mammary epithelial cells to lipopolysaccharide stimulation, Am. J. Vet. Res. (1998) 59:1563-1567 [PubMed].
  8. Campos M.A., Gazzinelli R.T., Trypanosoma cruzi and its components act as exogenous mediators of inflammation recognized through toll-like receptors, Mediators Inflamm. (2004) 13:139-143 [CrossRef] [PubMed].
  9. Chang J.H., Park J.Y., Kim S.K., Dependence on p38 MAPK signaling in the up-regulation of TLR2, TLR4 and TLR9 gene expression in Trichomonas vaginalis treated HeLa cells, Immunology (2006) 118:164-170 [CrossRef] [PubMed].
  10. Connor E.E., Cates E.A., Williams J.L., Bannerman D.D., Cloning and radiation hybrid mapping of bovine toll-like receptor-4 (TLR-4) signaling molecules, Vet. Immunol. Immunopathol. (2006) 112:302-308 [CrossRef] [PubMed].
  11. Creagh E.M., Conroy H., Martin S.J., Caspase-activation pathways in apopotosis and immunity, Immunol. Rev. (2003) 193:10-21 [CrossRef] [PubMed].
  12. Cullor J.S., Shock attributable to bacterimia and endotoxemia in cattle: clinical and experimental findings, J. Am. Vet. Med. Assoc. (1992) 200:1894-1902 [PubMed].
  13. Dauphinee S.M., Karsan A., Lipopolysaccharide signaling in endothelial cells, Lab. Invest. (2006) 86:9-22 [CrossRef] [PubMed].
  14. Fan J., Frey R.S., Malik A.B., TLR4 signaling induces TLR2 expression in endothelial cells via neutrophil NADPH oxidase, J. Clin. Invest. (2003) 112:1234-1243 [CrossRef] [PubMed].
  15. Faure E., Equils O., Sieling P.A., Thomas L., Zhang F.X., Kirschning C.J., Polenturatti N., Muzio M., Arditi M., Bacterial lipopolysaccharide activates NF-$\kappa $B through toll-like receptor 4 (TLR-4) in cultured human dermal endothelial cells: differential expression of TLR-4 and TLR-2 in endothelial cells, J. Biol. Chem. (2000) 275:11058-11063 [CrossRef] [PubMed].
  16. Faure E., Thomas L., Xu H., Medvedev A.E., Equils O., Arditi M., Bacterial lipopolysaccharide and IFN-$\gamma $ induce toll-like receptor 2 and toll-like receptor 4 expression in human endothelial cells: role of NF-$\kappa $B activation, J. Immunol. (2001) 166:2018-2024 [PubMed].
  17. Goldammer T., Zerbe H., Molenaar A., Schuberth H.J., Brunner R.M., Kata S.R., Seyfert H.M., Mastitis increases mammary mRNA abundance of $\beta
$-defensin 5, toll-like receptor 2 (TLR2), and TLR4 but not TLR9 in cattle, Clin. Diagn. Lab. Immunol. (2004) 11:174-185 [CrossRef] [PubMed].
  18. Guillot L., Medjane S., Le-Barillec K., Balloy V., Danel C., Chignard M., Si-Tahar M., Response of human epithelial cells to lipopolysaccharide involves toll-like receptor 4 (TLR4)-dependent signalling pathways: evidence for an intracellular compartmentalization of TLR4, J. Biol. Chem. (2004) 279:2712-2718 [CrossRef] [PubMed].
  19. Hayashi F., Smith K.D., Ozinsky A., Hawn T.R., Yi E.C., Goodlett D.R., Eng J.K., Akira S., Underhill D.M., Aderem A., The innate immune response to bacterial flagellin is mediated by toll-like receptor-5, Nature (2001) 410:1099-1103 [CrossRef] [PubMed].
  20. Heine H., Kirschning C.J., Lien E., Monks B.G., Rothe M., Golenbock D.T., Cutting edge: cells that carry a null allele for toll-like receptor 2 are capable of responding to endotoxin, J. Immunol. (1999) 162:6971-6975 [PubMed].
  21. Hirschfeld M., Weis J.J., Toshchakov V., Salkowski C.A., Cody M.J., Ward D.C., Qureshi N., Michalek S.M., Vogel S.N., Signaling by toll-like receptor 2 and 4 agonists results in differential gene expression in murine macrophages, Infect. Immun. (2001) 69:1477-1482 [CrossRef] [PubMed].
  22. Horng T., Barton G.M., Medzhitov R., TIRAP: an adapter molecule in the toll signaling pathway, Nat. Immunol. (2001) 2:835-841 [CrossRef] [PubMed].
  23. Hoshino K., Takeuchi O., Kawai T., Sanjo H., Ogawa T., Takeda Y., Takeda K., Akira S., Cutting edge: toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps hene product, J. Immunol. (1999) 162:3749-3752 [PubMed].
  24. Hsu L.C., Park J.M., Zhang K., Luo J.L., Maeda S., Kaufman R.J., Eckmann L., Guiney D.G., Karin M., The protein kinase PKR is required for macrophage apoptosis after activation of toll-like receptor 4, Nature (2004) 428:341-345 [CrossRef] [PubMed].
  25. Huynh H.T., Robitaille G., Turner J.D., Establishment of bovine mammary epithelial cells (MAC-T): an in vitro model for bovine lactation, Exp. Cell Res. (1991) 197:191-199 [CrossRef] [PubMed].
  26. Kagan J.C., Medzhitov R., Phosphoinositide-mediated adaptor recruitment controls toll-like receptor signaling, Cell (2006) 125: 943-955.
  27. Kaiser W.J., Offermann M.K., Apoptosis induced by the toll-like receptor adaptor TRIF is dependent on its interacting protein homotypic interaction motive, J. Immunol. (2005) 174:4942-4952 [PubMed].
  28. Kopp E., Medzhitov R., Recognition of microbial infection by toll-like receptors, Curr. Opin. Immunol. (2003) 15:396-401 [CrossRef] [PubMed].
  29. Lee J.W., Paape M.J., Elsasser T.H., Zhao X., Elevated milk soluble CD14 in bovine mammary glands challenged with Escherichia coli lipopolysaccharide, J. Dairy Sci. (2003) 86:2382-2389 [PubMed].
  30. Lee J.W., Bannerman D.D., Paape M.J., Huang M.K., Zhao X., Characterization of cytokine expression in milk somatic cells during intramammary infections with Eschericha coli or Staphylococcus aureus by real-time PCR, Vet. Res. (2006) 37:219-229 [CrossRef] [PubMed] [EDP Sciences].
  31. McGuire K., Jones M., Werling D., Williams J.L., Glass E.J., Jann O., Radiation hybrid mapping of all 10 characterized bovine toll-like receptors, Anim. Genet. (2006) 37:47-50 [CrossRef] [PubMed].
  32. Persson Waller K., Colditz I.G., Lun S., Ostensson K., Cytokines in mammary lymph and milk during endotoxin-induced bovine mastitis, Res. Vet. Sci. (2003) 74:31-36 [CrossRef] [PubMed].
  33. Pfaffl M.W., Horgan G.W., Dempfle L., Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR, Nucleic Acids Res. (2002) 30:e36.
  34. Poltorak A., He X., Smirnova I., Liu M.Y., Huffel C.V., Du X., Birdwell D., Alejos E., Silva M., Galanos C., Freudenberg M., Ricciardi-Castagnoli P., Layton B., Beutler B., Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutation in Tlr4 gene, Science (1998) 282:2085-2088 [CrossRef] [PubMed].
  35. Roy M.F., Larivière L., Wilkinson R., Tam M., Stevenson M.M., Malo D., Incremental expression of Tlr4 correlates with mouse resistance to Salmonella infection and fine regulation of relevant immune genes, Genes and Immunity (2006) 7:366-371 [CrossRef] [PubMed].
  36. Smith M.F. Jr, Mitchell A., Li G., Ding S., Fitzmaurice A.M., Ryan K., Crowe S., Goldberg J.B., Toll-like receptor (TLR) 2 and TLR5, but not TLR4 are required for Helicobacter pylori-induced NF-$\kappa $B activation and chemokine expression by epithelial cells, J. Biol. Chem. (2003) 278:32552-32560 [CrossRef] [PubMed].
  37. Sordillo L.M., Streicher K.L., Mammary gland immunity and mastitis susceptibility, J. Mammary Gland Biol. Neoplasia (2002) 7:135-146 [CrossRef] [PubMed].
  38. Swanson K., Gorodetsky S., Good L., Davis S., Musgrave D., Stelwagen K., Farr V., Molenaar D., Expression of $\beta
$-defensin mRNA, lingual antimicrobial peptide, in bovine mammary epithelial tissue is induced by mastitis, Infect. Immun. (2004) 72:7311-7314 [CrossRef] [PubMed].
  39. Takeda K., Akira S., Toll-like receptors in innate immunity, Int. Immunol. (2005) 17:1-14 [CrossRef] [PubMed].
  40. Takeuchi O., Akira S., MyD88 as a bottle neck in Toll/IL-1 signaling, Curr. Top. Microbiol. Immunol. (2002) 270:155-167 [PubMed].
  41. Takeuchi O., Hoshino K., Kawai T., Sanjo H., Takada H., Ogawa T., Takeda K., Akira S., Differential roles of TLR2 and TLR4 in recognition of Gram-negative and Gram-positive bacterial cell wall components, Immunity (1999) 11:443-451 [CrossRef] [PubMed].
  42. Takeuchi O., Takeda K., Hoshino K., Adachi O., Ogawa T., Akira S., Cellular responses to bacterial cell wall components are mediated through MyD88-dependent signaling cascades, Int. Immunol. (2000) 12:113-117 [CrossRef] [PubMed].
  43. Werts C., Tapping R.I., Mathison J.C., Chuang T.H., Kravchenko V., Saint Girons I., Haake D.A., Godowski P.J., Hayashi F., Ozinsky A., Underhill D.M., Kirschning C.J., Wagner H., Aderem A., Tobias P.S., Ulevitch R.J., Leptospiral lipopolysaccharide activates cells through a TLR2-dependent mechanism, Nat. Immunol. (2001) 2:346-353 [CrossRef] [PubMed].
  44. Wolfs T.G., Buurman W.A., van Schadewijk A., de Vries B., Daemen M.A., Hiemstra P.S., van 't Veer C., In vivo expression of toll-like receptor 2 and 4 by renal epithelial cells: IFN-gamma and TNF-alpha mediated up-regulation during inflammation, J. Immunol. (2002) 168:1286-1293 [PubMed].
  45. Yamamoto M., Sato S., Hemmi H., Sanjo H., Uematsu S., Kaisho T., Hoshino K., Takeuchi O., Kobayashi M., Fujita T., Takeda K., Akira S., Essential role for TIRAP in activation of the signaling cascade shared by TLR2 and TLR4, Nature (2002) 420:324-329 [CrossRef] [PubMed].
  46. Yamamoto M., Sato S., Hemmi H., Hoshino K., Kaisho T., Sanjo H., Takeuchi O., Sugiyama M., Okabe M., Takeda K., Akira S., Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway, Science (2003) 301:640-643 [CrossRef] [PubMed].
  47. Yamamoto M., Sato S., Hemmi H., Uematsu S., Hoshino K., Kaisho T., Takeuchi O., Takeda K., Akira S., TRAM is specifically involved in the toll-like receptor 4-mediated MyD88-independent pathway, Nat. Immunol. (2003) 4:1144-1150 [CrossRef] [PubMed].
  48. Yang Y., Zhou H., Yang Y., Li W., Zhou M., Zeng Z., Xiong W., Wu M., Huang H., Zhou Y., Peng C., Huang C., Li X., Li G., Lipopolysaccharide (LPS) regulates TLR4 signal transduction in nasopharynx epithelial cell line 5-8F via NF$\kappa $B and MAPKs signaling pathways, Mol. Immunol. (2006) 44:984-992 [CrossRef] [PubMed].
  49. Zhang G., Ghosh S., Negative regulation of toll-like receptor-mediated signaling by Tollip, J. Biol. Chem. (2002) 277:7059-7065 [CrossRef] [PubMed].