Free access
Issue
Vet. Res.
Volume 39, Number 1, January-February 2008
Number of page(s) 23
DOI http://dx.doi.org/10.1051/vetres:2007044
Published online 22 November 2007
How to cite this article Vet. Res. (2008) 39:05
References of  Vet. Res. (2008) 39:05
  1. Akira S., Takeda K., toll-like receptor signalling, Nat. Rev. Immunol. (2004) 4:499-511 [CrossRef] [PubMed].
  2. Alves-Filho J.C., Benjamim C., Tavares-Murta B.M., Cunha F.Q., Failure of neutrophil migration toward infectious focus in severe sepsis: a critical event for the outcome of this syndrome, Mem. Inst. Oswaldo Cruz (2005) 100:223-226 [CrossRef] [PubMed].
  3. Alves-Filho J.C., de Freitas A., Russo M., Cunha F.Q., toll-like receptor 4 signaling leads to neutrophil migration impairment in polymicrobial sepsis, Crit. Care Med. (2006) 34:461-470 [CrossRef] [PubMed].
  4. Andonegui G., Bonder C.S., Green F., Mullaly S.C., Zbytnuik L., Raharjo E., Kubes P., Endothelium-derived toll-like receptor-4 is the key molecule in LPS-induced neutrophil sequestration into lungs, J. Clin. Invest. (2003) 111:1011-1020 [CrossRef] [PubMed].
  5. Baggiolini M., Moser B., Clark-Lewis I., Interleukin-8 and related chemotactic cytokines, The Giles Filley Lecture, Chest (1994) 105:95S-98S [CrossRef] [PubMed].
  6. Baldridge J.R., McGowan P., Evans J.T., Cluff C., Mossman S., Johnson D., Persing D., Taking a toll on human disease: toll-like receptor 4 agonists as vaccine adjuvants and monotherapeutic agents, Expert. Opin. Biol. Ther. (2004) 4:1129-1138 [CrossRef] [PubMed].
  7. Baldwin A.S. Jr, The NF-kappa B and I kappa B proteins: new discoveries and insights, Annu. Rev. Immunol. (1996) 14:649-683 [CrossRef] [PubMed].
  8. Bannerman D.D., Goldblum S.E., Endotoxin induces endothelial barrier dysfunction through protein tyrosine phosphorylation, Am. J. Physiol. (1997) 273:L217-L226 [PubMed].
  9. Bannerman D.D., Goldblum S.E., Direct effects of endotoxin on the endothelium: barrier function and injury, Lab. Invest. (1999) 79:1181-1199 [PubMed].
  10. Bannerman D.D., Tupper J.C., Ricketts W.A., Bennett C.F., Winn R.K., Harlan J.M., A constitutive cytoprotective pathway protects endothelial cells from lipopolysaccharide-induced apoptosis, J. Biol. Chem. (2001) 276:14924-14932 [CrossRef] [PubMed].
  11. Bannerman D.D., Tupper J.C., Kelly J.D., Winn R.K., Harlan J.M., The Fas-associated death domain protein suppresses activation of NF-kappa B by LPS and IL-1 beta, J. Clin. Invest. (2002) 109:419-425 [CrossRef] [PubMed].
  12. Bannerman D.D., Tupper J.C., Erwert R.D., Winn R.K., Harlan J.M., Divergence of bacterial lipopolysaccharide pro-apoptotic signaling downstream of IRAK-1, J. Biol. Chem. (2002) 277:8048-8053 [CrossRef] [PubMed].
  13. Bannerman D.D., Erwert R.D., Winn R.K., Harlan J.M., TIRAP mediates endotoxin-induced NF-kappa B activation and apoptosis in endothelial cells, Biochem. Biophys. Res. Commun. (2002) 295:157-162 [CrossRef] [PubMed].
  14. Bannerman D.D., Paape M.J., Hare W.R., Sohn E.J., Increased levels of LPS-binding protein in bovine blood and milk following bacterial lipopolysaccharide challenge, J. Dairy Sci. (2003) 86:3128-3137 [PubMed].
  15. Bannerman D.D., Paape M.J., Lee J.W., Zhao X., Hope J.C., Rainard P., Escherichia coli and Staphylococcus aureus elicit differential innate immune responses following intramammary infection, Clin. Diagn. Lab. Immunol. (2004) 11:463-472 [CrossRef] [PubMed].
  16. Bannerman D.D., Paape M.J., Goff J.P., Kimura K., Lippolis J.D., Hope J.C., Innate immune response to intramammary infection with Serratia marcescens and Streptococcus uberis, Vet. Res. (2004) 35:681-700 [CrossRef] [PubMed] [EDP Sciences].
  17. Berczi I., Bertok L., Bereznai T., Comparative studies on the toxicity of Escherichia coli lipopolysaccharide endotoxin in various animal species, Can. J. Microbiol. (1966) 12:1070-1071 [PubMed].
  18. Bertok L., Radio-detoxified endotoxin activates natural immunity: a review, Pathophysiology (2005) 12:85-95 [CrossRef] [PubMed].
  19. Bierhaus A., Chen J., Liliensiek B., Nawroth P.P., LPS and cytokine-activated endothelium, Semin. Thromb. Hemost. (2000) 26:571-587 [CrossRef] [PubMed].
  20. Blondin C., Le Dur A., Cholley B., Caroff M., Haeffner-Cavaillon N., Lipopolysaccharide complexed with soluble CD14 binds to normal human monocytes, Eur. J. Immunol. (1997) 27:3303-3309 [CrossRef] [PubMed].
  21. Bone R.C., Gram-negative sepsis. Background, clinical features, and intervention, Chest (1991) 100:802-808 [CrossRef] [PubMed].
  22. Boudjellab N., Chan-Tang H.S., Zhao X., Bovine interleukin-1 expression by cultured mammary epithelial cells (MAC-T) and its involvement in the release of MAC-T derived interleukin-8, Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. (2000) 127:191-199 [CrossRef].
  23. Boulanger D., Bureau F., Melotte D., Mainil J., Lekeux P., Increased nuclear factor kappa B activity in milk cells of mastitis-affected cows, J. Dairy Sci. (2003) 86:1259-1267 [PubMed].
  24. Bright S.A., Schultze W.D., Paape M.J., Peters R.R., Effect of intramammary devices on the outcome of induced Escherichia coli infection of bovine mammary quarters, Am. J. Vet. Res. (1987) 48:1290-1294 [PubMed].
  25. Bruckmaier R.M., Gene expression of factors related to the immune reaction in response to intramammary Escherichia coli lipopolysaccharide challenge, J. Dairy Res. (2005) 72:120-124 [CrossRef] [PubMed].
  26. Bufler P., Stiegler G., Schuchmann M., Hess S., Kruger C., Stelter F., Eckerskorn C., Schutt C., Engelmann H., Soluble lipopolysaccharide receptor (CD14) is released via two different mechanisms from human monocytes and CD14 transfectants, Eur. J. Immunol. (1995) 25:604-610 [CrossRef] [PubMed].
  27. Burns K., Martinon F., Esslinger C., Pahl H., Schneider P., Bodmer J.L., Di Marco F., French L., Tschopp J., MyD88, an adapter protein involved in interleukin-1 signaling, J. Biol. Chem. (1998) 273:12203-12209 [CrossRef] [PubMed].
  28. Burton J.L., Madsen S.A., Chang L.C., Weber P.S., Buckham K.R., van Dorp R., Hickey M.C., Earley B., Gene expression signatures in neutrophils exposed to glucocorticoids: a new paradigm to help explain "neutrophil dysfunction" in parturient dairy cows, Vet. Immunol. Immunopathol. (2005) 105:197-219 [CrossRef] [PubMed].
  29. Burvenich C., Van Merris V., Mehrzad J., Diez-Fraile A., Duchateau L., Severity of E. coli mastitis is mainly determined by cow factors, Vet. Res. (2003) 34:521-564 [CrossRef] [PubMed] [EDP Sciences].
  30. Burvenich C., Monfardini E., Mehrzad J., Capuco A.V., Paape M.J., Role of neutrophil polymorphonuclear leukocytes during bovine coliform mastitis: physiology or pathology? Verh. K. Acad. Geneeskd. Belg. (2004) 66:97-150.
  31. Cao Z., Xiong J., Takeuchi M., Kurama T., Goeddel D.V., TRAF6 is a signal transducer for interleukin-1, Nature (1996) 383:443-446 [CrossRef] [PubMed].
  32. Chitko-McKown C.G., Fox J.M., Miller L.C., Heaton M.P., Bono J.L., Keen J.E., Grosse W.M., Laegreid W.W., Gene expression profiling of bovine macrophages in response to Escherichia coli O157:H7 lipopolysaccharide, Dev. Comp Immunol. (2004) 28:635-645 [CrossRef] [PubMed].
  33. Choi K.B., Wong F., Harlan J.M., Chaudhary P.M., Hood L., Karsan A., Lipopolysaccharide mediates endothelial apoptosis by a FADD-dependent pathway, J. Biol. Chem. (1998) 273:20185-20188 [CrossRef] [PubMed].
  34. Chow J.C., Young D.W., Golenbock D.T., Christ W.J., Gusovsky F., toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction, J. Biol. Chem. (1999) 274:10689-10692 [CrossRef] [PubMed].
  35. Chuang T.H., Ulevitch R.J., Triad3A, an E3 ubiquitin-protein ligase regulating toll-like receptors, Nat. Immunol. (2004) 5:495-502 [CrossRef] [PubMed].
  36. Cluff C.W., Baldridge J.R., Stover A.G., Evans J.T., Johnson D.A., Lacy M.J., Clawson V.G., Yorgensen V.M., Johnson C.L., Livesay M.T., Hershberg R.M., Persing D.H., Synthetic toll-like receptor 4 agonists stimulate innate resistance to infectious challenge, Infect. Immun. (2005) 73:3044-3052 [CrossRef] [PubMed].
  37. Connall T.P., Zhang J., Vaziri N.D., Schwartz R.J., Kaupke C.J., Oveisi F., Wilson S.E., Radiodetoxified endotoxin-induced tolerance alters monocyte but not neutrophil CD11b and CD18 expression in response to lipopolysaccharide, Arch. Surg. (1994) 129:1153-1158 [PubMed].
  38. Connor E.E., Cates E.A., Williams J.L., Bannerman D.D., Cloning and radiation hybrid mapping of bovine toll-like receptor-4 (TLR-4) signaling molecules, Vet. Immunol. Immunopathol. (2006) 112:302-308 [CrossRef] [PubMed].
  39. De Martin R., Hoeth M., Hofer-Warbinek R., Schmid J.A., The transcription factor NF-kappa B and the regulation of vascular cell function, Arterioscler. Thromb. Vasc. Biol. (2000) 20:E83-E88 [PubMed].
  40. Dosogne H., Vangroenweghe F., Burvenich C., Potential mechanism of action of J5 vaccine in protection against severe bovine coliform mastitis, Vet. Res. (2002) 33:1-12 [CrossRef] [PubMed] [EDP Sciences].
  41. Dunzendorfer S., Lee H.K., Soldau K., Tobias P.S., TLR4 is the signaling but not the lipopolysaccharide uptake receptor, J. Immunol. (2004) 173:1166-1170 [PubMed].
  42. Dunzendorfer S., Lee H.K., Soldau K., Tobias P.S., TLR4 functions intracellularly in human coronary artery endothelial cells: roles of LBP and sCD14 in mediating LPS resonses, FASEB J. (2004) 18:1117-1119 [PubMed].
  43. Dziarski R., Wang Q., Miyake K., Kirschning C.J., Gupta D., MD-2 enables toll-like receptor 2 (TLR2)-mediated responses to lipopolysaccharide and enhances TLR2-mediated responses to Gram-positive and Gram-negative bacteria and their cell wall components, J. Immunol. (2001) 166:1938-1944 [PubMed].
  44. Eichbaum E.B., Harris H.W., Kane J.P., Rapp J.H., Chylomicrons can inhibit endotoxin activity in vitro, J. Surg. Res. (1991) 51:413-416 [CrossRef] [PubMed].
  45. Fitzgerald K.A., Palsson-McDermott E.M., Bowie A.G., Jefferies C.A., Mansell A.S., Brady G., Brint E., Dunne A., Gray P., Harte M.T., McMurray D., Smith D.E., Sims J.E., Bird T.A., O'Neill L.A., Mal (MyD88-adapter-like) is required for toll-like receptor-4 signal transduction, Nature (2001) 413:78-83 [CrossRef] [PubMed].
  46. Fitzgerald K.A., Rowe D.C., Barnes B.J., Caffrey D.R., Visintin A., Latz E., Monks B., Pitha P.M., Golenbock D.T., LPS-TLR4 signaling to IRF-3/7 and NF-kappa B involves the toll adapters TRAM and TRIF, J. Exp. Med. (2003) 198:1043-1055 [CrossRef] [PubMed].
  47. Franchini M., Schweizer M., Matzener P., Magkouras I., Sauter K.S., Mirkovitch J., Peterhans E., Jungi T.W., Evidence for dissociation of TLR mRNA expression and TLR agonist-mediated functions in bovine macrophages, Vet. Immunol. Immunopathol. (2006) 110:37-49 [CrossRef] [PubMed].
  48. François S., El Benna J., Dang P.M., Pedruzzi E., Gougerot-Pocidalo M.A., Elbim C., Inhibition of neutrophil apoptosis by TLR agonists in whole blood: involvement of the phosphoinositide 3-kinase/Akt and NF-kappa B signaling pathways, leading to increased levels of Mcl-1, A1, and phosphorylated Bad, J. Immunol. (2005) 174:3633-3642 [PubMed].
  49. Frey E.A., Miller D.S., Jahr T.G., Sundan A., Bazil V., Espevik T., Finlay B.B., Wright S.D., Soluble CD14 participates in the response of cells to lipopolysaccharide, J. Exp. Med. (1992) 176:1665-1671 [CrossRef] [PubMed].
  50. Funda D.P., Tuckova L., Farre M.A., Iwase T., Moro I., Tlaskalova-Hogenova H., CD14 is expressed and released as soluble CD14 by human intestinal epithelial cells in vitro: lipopolysaccharide activation of epithelial cells revisited, Infect. Immun. (2001) 69:3772-3781 [CrossRef] [PubMed].
  51. Goldammer T., Zerbe H., Molenaar A., Schuberth H.J., Brunner R.M., Kata S.R., Seyfert H.M., Mastitis increases mammary mRNA abundance of beta-defensin 5, toll-like-receptor 2 (TLR2), and TLR4 but not TLR9 in cattle, Clin. Diagn. Lab. Immunol. (2004) 11:174-185 [CrossRef] [PubMed].
  52. Guha M., Mackman N., LPS induction of gene expression in human monocytes, Cell. Signal. (2001) 13:85-94 [CrossRef] [PubMed].
  53. Gupta D., Kirkland T.N., Viriyakosol S., Dziarski R., CD14 is a cell-activating receptor for bacterial peptidoglycan, J. Biol. Chem. (1996) 271:23310-23316 [CrossRef] [PubMed].
  54. Harlan J.M., Harker L.A., Reidy M.A., Gajdusek C.M., Schwartz S.M., Striker G.E., Lipopolysaccharide-mediated bovine endothelial cell injury in vitro, Lab. Invest. (1983) 48:269-274 [PubMed].
  55. Harlan J.M., Harker L.A., Striker G.E., Weaver L.J., Effects of lipopolysaccharide on human endothelial cells in culture, Thromb. Res. (1983) 29:15-26 [CrossRef] [PubMed].
  56. Harris H.W., Grunfeld C., Feingold K.R., Rapp J.H., Human very low density lipoproteins and chylomicrons can protect against endotoxin-induced death in mice, J. Clin. Invest. (1990) 86:696-702 [PubMed].
  57. Haziot A., Tsuberi B.Z., Goyert S.M., Neutrophil CD14: biochemical properties and role in the secretion of tumor necrosis factor-alpha in response to lipopolysaccharide, J. Immunol. (1993) 150:5556-5565 [PubMed].
  58. Haziot A., Ferrero E., Kontgen F., Hijiya N., Yamamoto S., Silver J., Stewart C.L., Goyert S.M., Resistance to endotoxin shock and reduced dissemination of gram-negative bacteria in CD14-deficient mice, Immunity (1996) 4:407-414 [CrossRef] [PubMed].
  59. Heyneman R., Burvenich C., Vercauteren R., Interaction between the respiratory burst activity of neutrophil leukocytes and experimentally induced Escherichia coli mastitis in cows, J. Dairy Sci. (1990) 73:985-994 [PubMed].
  60. Hill A.W., Shears A.L., Hibbitt K.G., The pathogenesis of experimental Escherichia coli mastitis in newly calved dairy cows, Res. Vet. Sci. (1979) 26:97-101 [PubMed].
  61. Hill A.W., Factors influencing the outcome of Escherichia coli mastitis in the dairy cow, Res. Vet. Sci. (1981) 31:107-112 [PubMed].
  62. Hoblet K.H., Schnitkey G.D., Arbaugh D., Hogan J.S., Smith K.L., Schoenberger P.S., Todhunter D.A., Hueston W.D., Pritchard D.E., Bowman G.L., Costs associated with selected preventive practices and with episodes of clinical mastitis in nine herds with low somatic cell counts, J. Am. Vet. Med. Assoc. (1991) 199:190-196 [PubMed].
  63. Hogan J.S., Weiss W.P., Smith K.L., Todhunter D.A., Schoenberger P.S., Sordillo L.M., Effects of an Escherichia coli J5 vaccine on mild clinical coliform mastitis, J. Dairy Sci. (1995) 78:285-290 [PubMed].
  64. Hornef M.W., Normark B.H., Vandewalle A., Normark S., Intracellular recognition of lipopolysaccharide by toll-like receptor 4 in intestinal epithelial cells, J. Exp. Med. (2003) 198:1225-1235 [CrossRef] [PubMed].
  65. Horng T., Barton G.M., Medzhitov R., TIRAP: an adapter molecule in the Toll signaling pathway, Nat. Immunol. (2001) 2:835-841 [CrossRef] [PubMed].
  66. Hoshino K., Takeuchi O., Kawai T., Sanjo H., Ogawa T., Takeda Y., Takeda K., Akira S., Cutting edge: toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product, J. Immunol. (1999) 162:3749-3752 [PubMed].
  67. Hull C., McLean G., Wong F., Duriez P.J., Karsan A., Lipopolysaccharide signals an endothelial apoptosis pathway through TNF receptor-associated factor 6-mediated activation of c-Jun NH2-terminal kinase, J. Immunol. (2002) 169:2611-2618 [PubMed].
  68. Husebye H., Halaas O., Stenmark H., Tunheim G., Sandanger O., Bogen B., Brech A., Latz E., Espevik T., Endocytic pathways regulate toll-like receptor 4 signaling and link innate and adaptive immunity, EMBO J. (2006) 25:683-692 [CrossRef] [PubMed].
  69. Ingalls R.R., Arnaout M.A., Golenbock D.T., Outside-in signaling by lipopolysaccharide through a tailless integrin, J. Immunol. (1997) 159:433-438 [PubMed].
  70. Iwami K.I., Matsuguchi T., Masuda A., Kikuchi T., Musikacharoen T., Yoshikai Y., Cutting edge: naturally occurring soluble form of mouse toll-like receptor 4 inhibits lipopolysaccharide signaling, J. Immunol. (2000) 165:6682-6686 [PubMed].
  71. Janssens S., Burns K., Tschopp J., Beyaert R., Regulation of interleukin-1- and lipopolysaccharide-induced NF-kappa B activation by alternative splicing of MyD88, Curr. Biol. (2002) 12:467-471 [CrossRef] [PubMed].
  72. Kaiser W.J., Offermann M.K., Apoptosis induced by the toll-like receptor adaptor TRIF is dependent on its receptor interacting protein homotypic interaction motif, J. Immunol. (2005) 174:4942-4952 [PubMed].
  73. Kawai T., Akira S., Pathogen recognition with toll-like receptors, Curr. Opin. Immunol. (2005) 17:338-344 [CrossRef] [PubMed].
  74. Kerfoot S.M., Kubes P., Local coordination verses systemic disregulation: complexities in leukocyte recruitment revealed by local and systemic activation of TLR4 in vivo, J. Leukoc. Biol. (2005) 77:862-867 [CrossRef] [PubMed].
  75. Kollewe C., Mackensen A.C., Neumann D., Knop J., Cao P., Li S., Wesche H., Martin M.U., Sequential autophosphorylation steps in the interleukin-1 receptor-associated kinase-1 regulate its availability as an adapter in interleukin-1 signaling, J. Biol. Chem. (2004) 279:5227-5236 [CrossRef] [PubMed].
  76. Labeta M.O., Durieux J.J., Fernandez N., Herrmann R., Ferrara P., Release from a human monocyte-like cell line of two different soluble forms of the lipopolysaccharide receptor, CD14, Eur. J. Immunol. (1993) 23:2144-2151 [CrossRef] [PubMed].
  77. Labeta M.O., Vidal K., Nores J.E., Arias M., Vita N., Morgan B.P., Guillemot J.C., Loyaux D., Ferrara P., Schmid D., Affolter M., Borysiewicz L.K., Donnet-Hughes A., Schiffrin E.J., Innate recognition of bacteria in human milk is mediated by a milk-derived highly expressed pattern recognition receptor, soluble CD14, J. Exp. Med. (2000) 191:1807-1812 [CrossRef] [PubMed].
  78. Larsen C.G., Anderson A.O., Oppenheim J.J., Matsushima K., Production of interleukin-8 by human dermal fibroblasts and keratinocytes in response to interleukin-1 or tumour necrosis factor, Immunology (1989) 68:31-36 [PubMed].
  79. Latz E., Visintin A., Lien E., Fitzgerald K.A., Monks B.G., Kurt-Jones E.A., Golenbock D.T., Espevik T., Lipopolysaccharide rapidly traffics to and from the Golgi apparatus with the toll-like receptor 4-MD-2-CD14 complex in a process that is distinct from the initiation of signal transduction, J. Biol. Chem. (2002) 277:47834-47843 [CrossRef] [PubMed].
  80. Lee J.I., Burckart G.J., Nuclear factor kappa B: important transcription factor and therapeutic target, J. Clin. Pharmacol. (1998) 38:981-993 [CrossRef] [PubMed].
  81. Lee J.W., Paape M.J., Elsasser T.H., Zhao X., Elevated milk soluble CD14 in bovine mammary glands challenged with Escherichia coli lipopolysaccharide, J. Dairy Sci. (2003) 86:2382-2389 [PubMed].
  82. Lee J.W., Paape M.J., Elsasser T.H., Zhao X., Recombinant soluble CD14 reduces severity of intramammary infection by Escherichia coli, Infect. Immun. (2003) 71:4034-4039 [CrossRef] [PubMed].
  83. Li L., Cousart S., Hu J., McCall C.E., Characterization of interleukin-1 receptor-associated kinase in normal and endotoxin-tolerant cells, J. Biol. Chem. (2000) 275:23340-23345 [CrossRef] [PubMed].
  84. Li S., Strelow A., Fontana E.J., Wesche H., IRAK-4: a novel member of the IRAK family with the properties of an IRAK-kinase, Proc. Natl. Acad. Sci. USA (2002) 99:5567-5572 [CrossRef] [PubMed].
  85. Liew F.Y., Xu D., Brint E.K., O'Neill L.A., Negative regulation of toll-like receptor-mediated immune responses, Nat. Rev. Immunol. (2005) 5:446-458 [CrossRef] [PubMed].
  86. Lynn W.A., Raetz C.R., Qureshi N., Golenbock D.T., Lipopolysaccharide-induced stimulation of CD11b/CD18 expression on neutrophils. Evidence of specific receptor-based response and inhibition by lipid A-based antagonists, J. Immunol. (1991) 147:3072-3079 [PubMed].
  87. Lynn W.A., Liu Y., Golenbock D.T., Neither CD14 nor serum is absolutely necessary for activation of mononuclear phagocytes by bacterial lipopolysaccharide, Infect. Immun. (1993) 61:4452-4461 [PubMed].
  88. Malcolm K.C., Arndt P.G., Manos E.J., Jones D.A., Worthen G.S., Microarray analysis of lipopolysaccharide-treated human neutrophils, Am. J. Physiol. Lung Cell. Mol. Physiol. (2003) 284:L663-L670 [PubMed].
  89. Martich G.D., Boujoukos A.J., Suffredin A.F., Response of man to endotoxin, Immunobiology (1993) 187:403-416 [PubMed].
  90. Masihi K.N., Lange W., Brehmer W., Ribi E., Immunobiological activities of nontoxic lipid A: enhancement of nonspecific resistance in combination with trehalose dimycolate against viral infection and adjuvant effects, Int. J. Immunopharmacol. (1986) 8:339-345 [CrossRef] [PubMed].
  91. McGuire K., Jones M., Werling D., Williams J.L., Glass E.J., Jann O., Radiation hybrid mapping of all 10 characterized bovine toll-like receptors, Anim. Genet. (2006) 37:47-50 [CrossRef] [PubMed].
  92. Medzhitov R., Preston-Hurlburt P., Kopp E., Stadlen A., Chen C., Ghosh S., Janeway C.A. Jr, MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways, Mol. Cell (1998) 2:253-258 [CrossRef] [PubMed].
  93. Mehrzad J., Dosogne H., Meyer E., Burvenich C., Local and systemic effects of endotoxin mastitis on the chemiluminescence of milk and blood neutrophils in dairy cows, Vet. Res. (2001) 32:131-144 [CrossRef] [PubMed] [EDP Sciences].
  94. Menzies M., Ingham A., Identification and expression of toll-like receptors 1-10 in selected bovine and ovine tissues, Vet. Immunol. Immunopathol. (2005) 109:23-30 [CrossRef] [PubMed].
  95. Meylan E., Burns K., Hofmann K., Blancheteau V., Martinon F., Kelliher M., Tschopp J., RIP1 is an essential mediator of toll-like receptor 3-induced NF-kappa B activation, Nat. Immunol. (2004) 5:503-507 [CrossRef] [PubMed].
  96. Miller S.I., Ernst R.K., Bader M.W., LPS, TLR4 and infectious disease diversity, Nat. Rev. Microbiol. (2005) 3:36-46 [CrossRef] [PubMed].
  97. Moller A.S., Ovstebo R., Haug K.B., Joo G.B., Westvik A.B., Kierulf P., Chemokine production and pattern recognition receptor (PRR) expression in whole blood stimulated with pathogen-associated molecular patterns (PAMPs), Cytokine (2005) 32:304-315 [CrossRef] [PubMed].
  98. Moore K.J., Andersson L.P., Ingalls R.R., Monks B.G., Li R., Arnaout M.A., Golenbock D.T., Freeman M.W., Divergent response to LPS and bacteria in CD14-deficient murine macrophages, J. Immunol. (2000) 165:4272-4280 [PubMed].
  99. Mullarkey M., Rose J.R., Bristol J., Kawata T., Kimura A., Kobayashi S., Przetak M., Chow J., Gusovsky F., Christ W.J., Rossignol D.P., Inhibition of endotoxin response by e5564, a novel toll-like receptor 4-directed endotoxin antagonist, J. Pharmacol. Exp. Ther. (2003) 304:1093-1102 [CrossRef] [PubMed].
  100. Muzio M., Natoli G., Saccani S., Levrero M., Mantovani A., The human toll signaling pathway: divergence of nuclear factor kappa B and JNK/SAPK activation upstream of tumor necrosis factor receptor-associated factor 6 (TRAF6), J. Exp. Med. (1998) 187:2097-2101 [CrossRef] [PubMed].
  101. Nagai Y., Akashi S., Nagafuku M., Ogata M., Iwakura Y., Akira S., Kitamura T., Kosugi A., Kimoto M., Miyake K., Essential role of MD-2 in LPS responsiveness and TLR4 distribution, Nat. Immunol. (2002) 3:667-672 [PubMed].
  102. Nemchinov L.G., Paape M.J., Sohn E.J., Bannerman D.D., Zarlenga D.S., Hammond R.W., Bovine CD14 receptor produced in plants reduces severity of intramammary bacterial infection, FASEB J. (2006) 20:1345-1351 [CrossRef] [PubMed].
  103. Nishiya T., Kajita E., Miwa S., Ligand-independent oligomerization of TLR4 regulated by a short hydrophobic region adjacent to the transmembrane domain, Biochem. Biophys. Res. Commun. (2006) 341:1128-1134 [CrossRef] [PubMed].
  104. Nomura F., Akashi S., Sakao Y., Sato S., Kawai T., Matsumoto M., Nakanishi K., Kimoto M., Miyake K., Takeda K., Akira S., Cutting edge: endotoxin tolerance in mouse peritoneal macrophages correlates with down-regulation of surface toll-like receptor 4 expression, J. Immunol. (2000) 164:3476-3479 [PubMed].
  105. Nourshargh S., Perkins J.A., Showell H.J., Matsushima K., Williams T.J., Collins P.D., A comparative study of the neutrophil stimulatory activity in vitro and pro-inflammatory properties in vivo of 72 amino acid and 77 amino acid IL-8, J. Immunol. (1992) 148:106-111 [PubMed].
  106. Ogawa S., Lozach J., Benner C., Pascual G., Tangirala R.K., Westin S., Hoffmann A., Subramaniam S., David M., Rosenfeld M.G., Glass C.K., Molecular determinants of crosstalk between nuclear receptors and toll-like receptors, Cell (2005) 122:707-721 [CrossRef] [PubMed].
  107. Ohnishi T., Muroi M., Tanamoto K., MD-2 is necessary for the toll-like receptor 4 protein to undergo glycosylation essential for its translocation to the cell surface, Clin. Diagn. Lab. Immunol. (2003) 10:405-410 [CrossRef] [PubMed].
  108. Ohtsuka H., Kudo K., Mori K., Nagai F., Hatsugaya A., Tajima M., Tamura K., Hoshi F., Koiwa M., Kawamura S., Acute phase response in naturally occurring coliform mastitis, J. Vet. Med. Sci. (2001) 63:675-678 [CrossRef] [PubMed].
  109. Olsson S., Sundler R., The role of lipid rafts in LPS-induced signaling in a macrophage cell line, Mol. Immunol. (2006) 43:607-612 [CrossRef] [PubMed].
  110. Oshiumi H., Sasai M., Shida K., Fujita T., Matsumoto M., Seya T., TIR-containing adapter molecule (TICAM)-2, a bridging adapter recruiting to toll-like receptor 4 TICAM-1 that induces interferon-beta, J. Biol. Chem. (2003) 278:49751-49762 [CrossRef] [PubMed].
  111. Paape M.J., Schultze W.D., Guidry A.J., Kortum W.M., Weinland B.T., Effect of an intramammary polyethylene device on the concentration of leukocytes and immunoglobulins in milk and on the leukocyte response to Escherichia coli endotoxin and challenge exposure with Staphylococcus aureus, Am. J. Vet. Res. (1981) 42:774-783 [PubMed].
  112. Paape M.J., Schultze W.D., Corlett N.J., Weinland B.T., Effect of abraded intramammary device on outcome in lactating cows after challenge exposure with Streptococcus uberis, Am. J. Vet. Res. (1988) 49:790-792 [PubMed].
  113. Paape M.J., Capuco A.V., Guidry A.J., Burvenich C., Morphology function and adaptation of mammary cells in normal and disease states, J. Anim. Sci. (1995) 73 (Suppl. 2):1-17.
  114. Paape M.J., Lilius E.M., Wiitanen P.A., Kontio M.P., Miller R.H., Intramammary defense against infections induced by Escherichia coli in cows, Am. J. Vet. Res. (1996) 57:477-482 [PubMed].
  115. Paape M.J., Bannerman D., Zhao X., Lee J.W., The bovine neutrophil: structure and function in blood and milk, Vet. Res. (2003) 34:597-627 [CrossRef] [PubMed] [EDP Sciences].
  116. Pareek R., Wellnitz O., Van Dorp R., Burton J., Kerr D., Immunorelevant gene expression in LPS-challenged bovine mammary epithelial cells, J. Appl. Genet. (2005) 46:171-177 [PubMed].
  117. Persing D.H., Coler R.N., Lacy M.J., Johnson D.A., Baldridge J.R., Hershberg R.M., Reed S.G., Taking toll: lipid A mimetics as adjuvants and immunomodulators, Trends Microbiol. (2002) 10:S32-S37 [CrossRef] [PubMed].
  118. Peters R.R., Le Dane R.A., Douglass L.W., Paape M.J., Intramammary response to modified intramammary devices, J. Dairy Sci. (1992) 75:85-95 [PubMed].
  119. Pohlman T.H., Harlan J.M., Human endothelial cell response to lipopolysaccharide, interleukin-1, and tumor necrosis factor is regulated by protein synthesis, Cell. Immunol. (1989) 119:41-52 [CrossRef] [PubMed].
  120. Poltorak A., He X., Smirnova I., Liu M.Y., Van Huffel C., Du X., Birdwell D., Alejos E., Silva M., Galanos C., Freudenberg M., Ricciardi-Castagnoli P., Layton B., Beutler B., Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene, Science (1998) 282:2085-2088 [CrossRef] [PubMed].
  121. Pugin J., Schurer-Maly C.C., Leturcq D., Moriarty A., Ulevitch R.J., Tobias P.S., Lipopolysaccharide activation of human endothelial and epithelial cells is mediated by lipopolysaccharide-binding protein and soluble CD14, Proc. Natl. Acad. Sci. USA (1993) 90:2744-2748 [CrossRef] [PubMed].
  122. Pugin J., Heumann I.D., Tomasz A., Kravchenko V.V., Akamatsu Y., Nishijima M., Glauser M.P., Tobias P.S., Ulevitch R.J., CD14 is a pattern recognition receptor, Immunity (1994) 1:509-516 [CrossRef] [PubMed].
  123. Qureshi S.T., Lariviere L., Leveque G., Clermont S., Moore K.J., Gros P., Malo D., Endotoxin-tolerant mice have mutations in toll-like receptor 4 (Tlr4), J. Exp. Med. (1999) 189:615-625 [CrossRef] [PubMed].
  124. Rainard P., Riollet C., Innate immunity of the bovine mammary gland, Vet. Res. (2006) 37:369-400 [CrossRef] [PubMed] [EDP Sciences].
  125. Reinhardt T.A., Lippolis J.D., Bovine milk fat globule membrane proteome, J. Dairy Res. (2006) 73:406-416 [CrossRef] [PubMed].
  126. Remer K.A., Brcic M., Jungi T.W., toll-like receptor-4 is involved in eliciting an LPS-induced oxidative burst in neutrophils, Immunol. Lett. (2003) 85:75-80 [CrossRef] [PubMed].
  127. Ross K., Yang L., Dower S., Volpe F., Guesdon F., Identification of threonine 66 as a functionally critical residue of the interleukin-1 receptor-associated kinase, J. Biol. Chem. (2002) 277:37414-37421 [CrossRef] [PubMed].
  128. Sabroe I., Dower S.K., Whyte M.K., The role of toll-like receptors in the regulation of neutrophil migration, activation, and apoptosis, Clin. Infect. Dis. (2005) 41:S421-S426 [CrossRef] [PubMed].
  129. Sato S., Sugiyama M., Yamamoto M., Watanabe Y., Kawai T., Takeda K., Akira S., Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-kappa B and IFN-regulatory factor-3, in the toll-like receptor signaling, J. Immunol. (2003) 171:4304-4310 [PubMed].
  130. Savedra R. Jr, Delude R.L., Ingalls R.R., Fenton M.J., Golenbock D.T., Mycobacterial lipoarabinomannan recognition requires a receptor that shares components of the endotoxin signaling system, J. Immunol. (1996) 157:2549-2554 [PubMed].
  131. Schmaljohn C.S., Chu Y.K., Schmaljohn A.L., Dalrymple J.M., Antigenic subunits of Hantaan virus expressed by baculovirus and vaccinia virus recombinants, J. Virol. (1990) 64:3162-3170 [PubMed].
  132. Schultze W.D., Paape M.J., Effect on outcome of intramammary challenge exposure with Staphylococcus aureus of somatic cell concentration and presence of an intramammary device, Am. J. Vet. Res. (1984) 45:420-423 [PubMed].
  133. Schumann R.R., Function of lipopolysaccharide (LPS)-binding protein (LBP) and CD14, the receptor for LPS/LBP complexes: a short review, Res. Immunol. (1992) 143:11-15 [CrossRef] [PubMed].
  134. Seya T., Oshiumi H., Sasai M., Akazawa T., Matsumoto M., TICAM-1 and TICAM-2: toll-like receptor adapters that participate in induction of type 1 interferons, Int. J. Biochem. Cell Biol. (2005) 37:524-529 [CrossRef] [PubMed].
  135. Shimazu R., Akashi S., Ogata H., Nagai Y., Fukudome K., Miyake K., Kimoto M., MD-2, a molecule that confers lipopolysaccharide responsiveness on toll-like receptor 4, J. Exp. Med. (1999) 189:1777-1782 [CrossRef] [PubMed].
  136. Shuster D.E., Kehrli M.E. Jr, Stevens M.G., Cytokine production during endotoxin-induced mastitis in lactating dairy cows, Am. J. Vet. Res. (1993) 54:80-85 [PubMed].
  137. Shuster D.E., Lee E.K., Kehrli M.E. Jr, Bacterial growth, inflammatory cytokine production, and neutrophil recruitment during coliform mastitis in cows within ten days after calving, compared with cows at midlactation, Am. J. Vet. Res. (1996) 57:1569-1575 [PubMed].
  138. Singh J., Sidhu S.S., Dhaliwal G.S., Pangaonkar G.R., Nanda A.S., Grewal A.S., Effectiveness of lipopolysaccharide as an intrauterine immunomodulator in curing bacterial endometritis in repeat breeding cross-bred cows, Anim. Reprod. Sci. (2000) 59:159-166 [CrossRef] [PubMed].
  139. Smith J.L., Hogan J.S., Smith K.L., Efficacy of intramammary immunization with an Escherichia coli J5 bacterin, J. Dairy Sci. (1999) 82:2582-2588 [PubMed].
  140. Smits E., Burvenich C., Guidry A.J., Massart-Leen A., Adhesion receptor CD11b/CD18 contributes to neutrophil diapedesis across the bovine blood-milk barrier, Vet. Immunol. Immunopathol. (2000) 73:255-265 [CrossRef] [PubMed].
  141. Sohn E.J., Paape M.J., Peters R.R., Fetterer R.H., Talbot N.C., Bannerman D.D., The production and characterization of anti-bovine CD14 monoclonal antibodies, Vet. Res. (2004) 35:597-608 [CrossRef] [PubMed] [EDP Sciences].
  142. Song P.I., Abraham T.A., Park Y., Zivony A.S., Harten B., Edelhauser H.F., Ward S.L., Armstrong C.A., Ansel J.C., The expression of functional LPS receptor proteins CD14 and toll-like receptor 4 in human corneal cells, Invest. Ophthalmol. Vis. Sci. (2001) 42:2867-2877 [PubMed].
  143. Stennicke H.R., Salvesen G.S., Catalytic properties of the caspases, Cell Death Differ. (1999) 6:1054-1059 [CrossRef] [PubMed].
  144. Stover A.G., da Silva C.J., Evans J.T., Cluff C.W., Elliott M.W., Jeffery E.W., Johnson D.A., Lacy M.J., Baldridge J.R., Probst P., Ulevitch R.J., Persing D.H., Hershberg R.M., Structure-activity relationship of synthetic toll-like receptor 4 agonists, J. Biol. Chem. (2004) 279:4440-4449 [CrossRef] [PubMed].
  145. Strandberg Y., Gray C., Vuocolo T., Donaldson L., Broadway M., Tellam R., Lipopolysaccharide and lipoteichoic acid induce immune responses in bovine mammary epithelial cells, Cytokine (2005) 31:72-86 [CrossRef] [PubMed].
  146. Swantek J.L., Tsen M.F., Cobb M.H., Thomas J.A., IL-1 receptor-associated kinase modulates host responsiveness to endotoxin, J. Immunol. (2000) 164:4301-4306 [PubMed].
  147. Szperka M.E., Connor E.E., Paape M.J., Williams J.L., Bannerman D.D., Characterization of bovine FAS-associated death domain gene, Anim. Genet. (2005) 36:63-66 [CrossRef] [PubMed].
  148. Szperka M.E., Connor E.E., Paape M.J., Williams J.L., Bannerman D.D., Sequencing, chromosomal mapping, and functional characterization of bovine FLICE-like inhibitory protein (FLIP), Cytogenet. Genome Res. (2006) 112:90-97 [CrossRef] [PubMed].
  149. Tapping R.I., Tobias P.S., Cellular binding of soluble CD14 requires lipopolysaccharide (LPS) and LPS-binding protein, J. Biol. Chem. (1997) 272:23157-23164 [CrossRef] [PubMed].
  150. Teghanemt A., Zhang D., Levis E.N., Weiss J.P., Gioannini T.L., Molecular basis of reduced potency of underacylated endotoxins, J. Immunol. (2005) 175:4669-4676 [PubMed].
  151. Tomita G.M., Nickerson S.C., Owens W.E., Wren B., Influence of route of vaccine administration against experimental intramammary infection caused by Escherichia coli, J. Dairy Sci. (1998) 81:2159-2164 [PubMed].
  152. Tomita G.M., Ray C.H., Nickerson S.C., Owens W.E., Gallo G.F., A comparison of two commercially available Escherichia coli J5 vaccines against E. coli intramammary challenge, J. Dairy Sci. (2000) 83:2276-2281 [PubMed].
  153. Triantafilou M., Triantafilou K., Fernandez N., Rough and smooth forms of fluorescein-labelled bacterial endotoxin exhibit CD14/LBP dependent and independent binding that is influencedby endotoxin concentration, Eur. J. Biochem. (2000) 267:2218-2226 [CrossRef] [PubMed].
  154. Triantafilou M., Triantafilou K., Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster, Trends Immunol. (2002) 23:301-304 [CrossRef] [PubMed].
  155. Triantafilou M., Miyake K., Golenbock D.T., Triantafilou K., Mediators of innate immune recognition of bacteria concentrate in lipid rafts and facilitate lipopolysaccharide-induced cell activation, J. Cell Sci. (2002) 115:2603-2611 [PubMed].
  156. Triantafilou M., Morath S., Mackie A., Hartung T., Triantafilou K., Lateral diffusion of toll-like receptors reveals that they are transiently confined within lipid rafts on the plasma membrane, J. Cell Sci. (2004) 117:4007-4014 [CrossRef] [PubMed].
  157. Triantafilou M., Triantafilou K., The dynamics of LPS recognition: complex orchestration of multiple receptors, J. Endotoxin Res. (2005) 11:5-11 [PubMed].
  158. Troelstra A., Graaf-Miltenburg L.A., van Bommel T., Verhoef J., Van Kessel K.P., Van Strijp A., Lipopolysaccharide-coated erythrocytes activate human neutrophils via CD14 while subsequent binding is through CD11b/CD18, J. Immunol. (1999) 162:4220-4225 [PubMed].
  159. Vandeputte-Van Messom G., Burvenich C., Roets E., Massart-Leen A.M., Heyneman R., Kremer W.D., Brand A., Classification of newly calved cows into moderate and severe responders to experimentally induced Escherichia coli mastitis, J. Dairy Res. (1993) 60:19-29 [PubMed].
  160. Vangroenweghe F., Rainard P., Paape M., Duchateau L., Burvenich C., Increase of Escherichia coli inoculum doses induces faster innate immune response in primiparous cows, J. Dairy Sci. (2004) 87:4132-4144 [PubMed].
  161. Vangroenweghe F., Lamote I., Burvenich C., Physiology of the periparturient period and its relation to severity of clinical mastitis, Domest. Anim. Endocrinol. (2005) 29:283-293 [CrossRef] [PubMed].
  162. Vidal K., Labeta M.O., Schiffrin E.J., Donnet-Hughes A., Soluble CD14 in human breast milk and its role in innate immune responses, Acta Odontol. Scand. (2001) 59:330-334 [CrossRef] [PubMed].
  163. Visintin A., Mazzoni A., Spitzer J.A., Segal D.M., Secreted MD-2 is a large polymeric protein that efficiently confers lipopolysaccharide sensitivity to toll-like receptor 4, Proc. Natl. Acad. Sci. USA (2001) 98:12156-12161 [CrossRef] [PubMed].
  164. Visintin A., Halmen K.A., Latz E., Monks B.G., Golenbock D.T., Pharmacological inhibition of endotoxin responses is achieved by targeting the TLR4 coreceptor, MD-2, J. Immunol. (2005) 175:6465-6472 [PubMed].
  165. Vogel S.N., Fitzgerald K.A., Fenton M.J., TLRs: differential adapter utilization by toll-like receptors mediates TLR-specific patterns of gene expression, Mol. Interv. (2003) 3:466-477 [CrossRef] [PubMed].
  166. Vogel S.N., Awomoyi A.A., Rallabhandi P., Medvedev A.E., Mutations in TLR4 signaling that lead to increased susceptibility to infection in humans: an overview, J. Endotoxin. Res. (2005) 11:333-339 [PubMed].
  167. Wang Y., Zarlenga D.S., Paape M.J., Dahl G.E., Recombinant bovine soluble CD14 sensitizes the mammary gland to lipopolysaccharide, Vet. Immunol. Immunopathol. (2002) 86:115-124 [CrossRef] [PubMed].
  168. Wang Y., Zarlenga D.S., Paape M.J., Dahl G.E., Tomita G.M., Functional analysis of recombinant bovine CD14, Vet. Res. (2003) 34:413-421 [CrossRef] [PubMed] [EDP Sciences].
  169. Wenz J.R., Barrington G.M., Garry F.B., Ellis R.P., Magnuson R.J., Escherichia coli isolates' serotypes, genotypes, and virulence genes and clinical coliform mastitis severity, J. Dairy Sci. (2006) 89:3408-3412 [PubMed].
  170. Yamamoto M., Sato S., Hemmi H., Uematsu S., Hoshino K., Kaisho T., Takeuchi O., Takeda K., Akira S., TRAM is specifically involved in the toll-like receptor 4-mediated MyD88-independent signaling pathway, Nat. Immunol. (2003) 4:1144-1150 [CrossRef] [PubMed].
  171. Yoshimatsu K., Arikawa J., Kariwa H., Application of a recombinant baculovirus expressing hantavirus nucleocapsid protein as a diagnostic antigen in IFA test: cross reactivities among 3 serotypes of hantavirus which causes hemorrhagic fever with renal syndrome (HFRS), J. Vet. Med. Sci. (1993) 55:1047-1050 [PubMed].
  172. Yusibov V., Modelska A., Steplewski K., Agadjanyan M., Weiner D., Hooper D.C., Koprowski H., Antigens produced in plants by infection with chimeric plant viruses immunize against rabies virus and HIV-1, Proc. Natl. Acad. Sci. USA (1997) 94:5784-5788 [CrossRef] [PubMed].
  173. Zhao B., Bowden R.A., Stavchansky S.A., Bowman P.D., Human endothelial cell response to gram-negative lipopolysaccharide assessed with cDNA microarrays, Am. J. Physiol. Cell Physiol. (2001) 281:C1587-C1595 [PubMed].
  174. Zheng J., Watson A.D., Kerr D.E., Genome-wide expression analysis of lipopolysaccharide-induced mastitis in a mouse model, Infect. Immun. (2006) 74:1907-1915 [CrossRef] [PubMed].
  175. Zhou X., Gao X.P., Fan J., Liu Q., Anwar K.N., Frey R.S., Malik A.B., LPS activation of toll-like receptor 4 signals CD11b/CD18 expression in neutrophils, Am. J. Physiol. Lung Cell. Mol. Physiol. (2005) 288:L655-L662 [CrossRef] [PubMed].