Free access
Issue
Vet. Res.
Volume 35, Number 5, September-October 2004
Page(s) 597 - 608
DOI http://dx.doi.org/10.1051/vetres:2004035
How to cite this article Vet. Res. (2004) 597-608
References of Vet. Res. 35 597-608
  1. Antal-Szalmas P., Van Strijp J.A.G., Weersink A.J.L., Verhoef J., Van Kessel K.P.M., Quantitation of surface CD14 on human monocytes and neutrophils, J. Leukoc. Biol. 61 (1997) 721-728 [PubMed].
  2. Arditi M., Zhou J., Dorio R., Rong G., Goyert S., Kim K., Endotoxin-mediated endothelial cell injury and activation: role of soluble CD14, Infect. Immun. 61 (1993) 3149-3156 [PubMed].
  3. Bannerman D.D., Paape M.J., Hare W.R., Sohn E.J., Increased levels of LPS-binding protein in bovine blood and milk following bacterial lipopolysaccharide challenge, J. Dairy Sci. 86 (2003) 3128-3137 [PubMed].
  4. Bazil V., Horeji V., Baudays M., Kristofova H., Strominger J.I., Kostka W., Hilgert I., Biochemical characterization of a soluble form of the 53-kDa monocytes surface antigen, Eur. J. Immunol. 16 (1986) 1583-1589 [PubMed].
  5. Bufler P., Stiegler G., Shuchmann M., Hess S., Kruger C., Stelter F., Eckerskorn C., Schutt C., Engelmann H., Soluble lipopolysaccharide receptor (CD14) is released via two different mechanisms form human monocytes and CD14 transfectants, Eur. J. Immunol. 25 (1995) 604-610 [PubMed].
  6. Dentener M., Bazil V., Von Asmuth E., Ceska M., Buurman W., Involvement of CD14 in lipopolysaccharide induced tumor necrosis factor-alpha, IL-6 and IL-8 release by human monocytes and alveolar macrophage, J. Immunol. 150 (1993) 2885-2891 [PubMed].
  7. Desidero J.V., Campbell S.G., Bovine mammary gland macrophage: isolation, morphologic features, and cytophilic immunoglobulins, Am. J. Vet. Res. 41 (1980) 1595-1599.
  8. Duriex J.J., Vita N., Popescu O., Guette F., Calzada-Wack J., Munker R., Schmidt R.E., Lupker J., Ferrara P., Ziegler H.W., Labeta M.O., The two soluble forms of the lipopolysaccharide receptor, CD14: Characterization and release by normal human monocytes, Eur. J. Immunol. 24 (1994) 2006-2012 [PubMed].
  9. Didier J.L., Moriarty A.M., Talbott G., Winn R.K., Martin T.R., Ulevitch R.J., Antibodies against CD14 protect primates from endotoxin-induced shock, J. Clin. Invest. 98 (1996) 1533-1538 [PubMed].
  10. Erskine R.J., Tyler J.W., Riddell M.G., Wilson R.C., Theory, use and realities of efficacy and food safety of antimicrobial treatment of acute coliform mastitis, J. Am. Vet. Med. Assoc. 198 (1991) 980-984 [PubMed].
  11. Eberhart R.J., Coliform mastitis, Vet. Clin. North Am. Large Anim. Pract. 6 (1984) 287-300 [PubMed].
  12. Eberhart R.J., Natzke R.P., Newbould F.H.S., Nonnecke B., Thompson P., Coliform mastitis - a review, J. Dairy Sci. 62 (1979) 1-22.
  13. Fetterer R.H., Barfield R.C., Characterization of a developmentally regulated oocyst protein from Eimeria Tenella, J. Parasitol. 89 (2003) 553-564.
  14. Freshney R.I., Culture of animal cells, 3rd ed., Wiley-Liss, New York, 1994, pp. 107-126.
  15. Frey E.A., Miller D.S., Jahr T.G., Sundan A., Bazil V., Espevik T., Finlay B.B., Wright S.D., Soluble CD14 participates in the response of cells to lipopolysaccharide, J. Exp. Med. 176 (1992) 1665-1671 [CrossRef].
  16. Hammer R., Weber A.F., Ultrastructure of agranular leukocytes in peripheral blood of normal cows, Am. J. Vet. Res. 35 (1974) 527-536.
  17. Haziot A., Cehn S., Ferrero E., Low M., Silber R., Goyert S., The monocyte differentiation antigen, CD14, is anchored to the cell membrane by a phosphatidylinositol linkage, J. Immunol. 141 (1988) 547-552 [PubMed].
  18. Haziot A., Tsuberi B.Z., Goyert S.M., Neutrophil CD14: biochemical properties and role in the secretion of tumor necrosis factor-alpha in response to lipopolysaccharide, J. Immunol. 150 (1993) 5556-5565 [PubMed].
  19. Hogan J., Smith K.L., Coliform mastitis, Vet. Res. 34 (2003) 507-519 [EDP Sciences].
  20. Jayaram Y., Hogg N., Expression of CD14 molecules by human neutrophils, Tissue Antigens 33 (1989) 199-204.
  21. Jain N.C., Schalm's veterinary hematology, Lea & Febiger, Philadelphia, 1986.
  22. Labeta M., Durieux J.J., Fernandes N., Herrmannn R., Ferrara P., Release from a human monocyte-like cell line of two different soluble forms of the lipopolysaccharide receptor, CD14, Eur. J. Immunol. 23 (1993) 2144-2151 [PubMed].
  23. Lee J.-W., Paape M.J., Elsasser T.H., Zhao X., Elevated milk soluble CD14 in bovine mammary glands challenged with Escherichia coli lipopolysaccharide, J. Dairy Sci. 86 (2003) 2382-2389 [PubMed].
  24. Lee J.-W., Paape M.J., Elsasser T.H., Zhao X., Recombinant soluble CD14 reduces severity of intramammary infection by Escherichia coli, Infect. Immun. 71 (2003) 4034-4039 [CrossRef].
  25. Lee J.-W., Paape M.J., Zhao X., Recombinant bovine soluble CD14 reduces severity of experimental Escherichia coli masititis in mice, Vet. Res. 34 (2003) 307-316 [EDP Sciences].
  26. Maliszewski C., Ball E., Graziano R., Fanger M., Isolation and characterization of My 23, a myeloid cell-derived antigen reactive with the monoclonal antibody AML-2-23, J. Immunol. 135 (1985) 1926-1936.
  27. National Mastitis Council, Current concepts of bovine mastitis, 4th ed., National Mastitis Council, Madison, 1996.
  28. Paape M., Lilius E.,Wiitanen P., Kontio M., Miller R.H., Intramammary defense against infectious induced by Escherichia coli in cows, Am. J. Vet. Res. 57 (1996) 477-482 [PubMed].
  29. Paape M.J., Rautiainen P.M., Lilius E.M., Malstrom C.E., Elsasser T.H., Development of anti-bovine TNF-$\alpha$ mAb and ELISA for quantitating TNF-$\alpha$ in milk after intramammary injection of endotoxin, J. Dairy Sci. 85 (2002) 765-773 [PubMed].
  30. Schimke J., Mathison J., Morgiewicz J., Ulevitch R., Anti-CD14mAb treatment provides therapeutic benefit after in vivo exposure to endotoxin, Proc. Natl. Acad. Sci. USA 95 (1998) 13875-13380 [CrossRef].
  31. Shapiro R.A., Cunningham M.D., Ratcliffe K., Seachord C., Blake J., Bajorath A., Aruffo A., Dadveau P., Identification of CD14 residues involved in specific lipopolysaccharide recognition, Infect. Immun. 243 (1997) 100-109.
  32. Stelter F., Pfister M., Bernheiden M., Jack R.S., Bufler P., Engelmann H., Schutt C., The myeloid differentiation antigen CD14 in N- and O-glycosylated: contribution of N-linked glycosylation to different soluble CD14 isoforms, Eur. J. Biochem. 236 (1996) 457-464 [CrossRef].
  33. Stelter F., Bernheiden M., Menzel R., Jack R.S., Witt S., Fan X., Phister M., Schutt C., Mutation of amino acids 39-44 of human CD14 abrogates binding of lipopolysaccharide and Escherichia coli, Eur. J. Biochem. 243 (1997) 100-109 [CrossRef].
  34. Van Furth A.M., Verhard-Seijmonsbergen E.M., Langermans J.A.M., Van Dissel J.T., Van Furth R., Anti-CD14 monoclonal antibodies inhibit the production of tumor necrosis factor alpha and interleukin-10 by human monocytes stimulated with killed and live Haemophilus influenzae or Streptococcus pneumoniae organisms, Infect. Immun. 67 (1999) 3714-3718 [PubMed].
  35. Verbon A., Dekkers P.E., Van Hove T., Hack C.E., Pribble J.P., Turner T., Souza S., Axtelle T., Hoek F.J., Van Deventer S.J., Van der Poll T., CD14 and anti-CD14 antibody, inhibits endotoxin-mediated symptoms and inflammatory responses in humans, J. Immunol. 166 (2001) 3599-3605 [PubMed].
  36. Viriyakosol S., Kirkland T.N., The N-terminal half of membrane CD14 is a functional cellular lipopolysaccharide receptor, Infect. Immun. 64 (1996) 653-656 [PubMed].
  37. Wang Y., Paape M.J., Leino L., Capuco A.V., Narva H., Functional and phenotypic characterization of monoclonal antibodies to bovine L-selectin, Am. J. Vet. Res. 58 (1997) 1392-1401 [PubMed].
  38. Wang Y., Zarlenga D.S., Paape M.J., Dahl G.E., Recombinant bovine soluble CD14 sensitizes the mammary gland to lipopolysaccharide, Vet. Immunol. Immunopathol. 86 (2002) 115-124 [PubMed].
  39. Wright S.D., Ramos R.A., Tobias P.S., Ulevitch R.F., Mathisioon J.C., CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein, Science 249 (1990) 1431-1433.