Free access
Issue
Vet. Res.
Volume 32, Number 3-4, May-August 2001
Mechanisms of resistance to antibiotics in animal and zoonotic pathogens
Page(s) 261 - 273
DOI http://dx.doi.org/10.1051/vetres:2001123
How to cite this article Vet. Res. (2001) 261-273
  1. Adrian P.V., Klugman K.P., Mutations in the dihydrofolate reductase gene of trimethoprim-resistant isolates of Streptococcus pneumoniae, Antimicrob. Agents Chemother. 41 (1997) 2406-2413 [PubMed].
  2. Adrian P.V., Thomson C.J., Klugman K.P., Amyes S.G.B., New gene cassettes for trimethoprim resistance, dfr13, and streptomycin-spectinomycin resistance, aadA4, inserted on a class 1 integron, Antimicrob. Agents Chemother. 44 (2000) 355-361 [CrossRef] [PubMed].
  3. Brisson N., Hohn T., Nucleotide sequence of the dihydrofolate reductase gene borne by the plasmid R67 and conferring methotrexate resistance, Gene 28 (1984) 271-275 [CrossRef] [PubMed].
  4. Chiou C.S., Jones A.L., Nucleotide sequence analysis of a transposon (Tn 5393) carrying streptomycin resistance genes in Erwinia amylovora and other Gram-negative bacteria, J. Bacteriol. 175 (1993) 732-740 [PubMed].
  5. Coque T.M., Singh K.V., Weinstock G.M., Murray B.E., Characterization of dihydrofolate reductase genes from trimethoprim-susceptible and trimethoprim-resistant strains of Enterococcus faecalis, Antimicrob. Agents Chemother. 43 (1999) 141-147 [PubMed].
  6. de Groot R., Sluijter M., de Bruyn A., Camps J., Goessens W.H.F., Smith A.L., Hermans P.W.M., Genetic characterization of trimethoprim resistance in Haemophilus influenzae, Antimicrob. Agents Chemother. 40 (1996) 2131-2136 [PubMed].
  7. Domagk G., Beitrag zur Chemotherapie der bakteriellen Infektionen, Dtsch. Med. Wochenschr. 7 (1935) 250-253.
  8. Enne V.J., Livermore D.M., Hall L.M.C., Sulfonamide resistance in Haemophilus influenzae mediated by sul2 or an insertion in chromosomal folP. Abstract, 40th Interscience Conference on Antimicrobial Agents and Chemotherapy, p. 130, abstract no. 2275, 2000.
  9. Fermér C., Kristiansen B.-E., Sköld O., Swedberg G., Sulfonamide resistance in Neisseria meningitidis as defined by site-directed mutagenesis could have its origin in other species, J. Bacteriol. 177 (1995) 4669-4675 [PubMed].
  10. Flensburg J., Sköld O., Massive overproduction of dihydrofolate reductase as a response to the use of trimethoprim, Eur. J. Biochem. 162 (1987) 473-476 [PubMed].
  11. Flensburg J., Steen R., Nucleotide sequence analysis of the trimethoprim resistant dihydrofolate reductase encoded by R plasmid R751, Nucleic Acids Res. 14 (1986) 5933 [CrossRef] [PubMed].
  12. Gibreel A., Sköld O., High-level resistance to trimethoprim in clinical isolates of Campylobacter jejuni by acquisition of foreign genes (dfr1 and dfr9) expressing drug-insensitive dihydrofolate reductases, Antimicrob. Agents Chemother. 42 (1998) 3059-3064 [PubMed].
  13. Gibreel A., Sköld O., Sulfonamide resistance in clinical isolates of Campylobacter jejuni: mutational changes in the chromosomal dihydropteroate synthase, Antimicrob. Agents Chemother. 43 (1999) 2156-2160 [PubMed].
  14. Gibreel A., Sköld O., An integron cassette carrying dfr1 with 90-bp repeat sequences located on the chromosome of trimethoprim-resistant isolates of Campylobacter jejuni, Microb. Drug Resist. 6 (2000) 91-98 [PubMed].
  15. Hamilton-Miller J.M.T., Resistance to antibacterial agents acting on folate metabolism, in: Bryan L.E. (Ed.), Antimicrobial drug resistance, Academic Press, Inc., New York, 1984, pp. 173-190.
  16. Heikkilä E., Sundström L., Skurnik M., Huovinen P., Analysis of genetic localization of the type I trimethoprim resistance gene from Escherichia coli isolated in Finland, Antimicrob. Agents Chemother. 35 (1991) 1562-1569 [PubMed].
  17. Hummel R., Tschäpe H., Witte W., Spread of plasmid-mediated nourseothricin resistance due to antibiotic use in animal husbandry, J. Basic Microbiol. 26 (1986) 461-466 [PubMed].
  18. Huovinen P., Trimethoprim resistance, Antimicrob. Agents Chemother. 31 (1987) 1451-1456 [PubMed].
  19. Huovinen P., Sundström L., Swedberg G., Sköld O., Trimethoprim and sulfonamide resistance, Antimicrob. Agents Chemother. 39 (1995) 279-289 [PubMed].
  20. Jansson C., Sköld O., Appearance of a new trimethoprim resistance gene, dhfrIX, in Escherichia coli from swine, Antimicrob. Agents Chemother. 35 (1991) 1891-1899 [PubMed].
  21. Jansson C., Franklin A., Sköld O., Spread of a new trimethoprim resistance gene, dhfrIX, among porcine isolates and human pathogens, Antimicrob. Agents Chemother. 36 (1992) 2704-2708 [PubMed].
  22. King C.H., Shlaes D.M., Dul M.J., Infection caused by thymidine-requiring, trimethoprim-resistant bacteria, J. Clin. Microbiol. 18 (1983) 79-83 [PubMed].
  23. Kristiansen B.-E., Rådström P., Jenkins A., Ask E., Facinelli B., Sköld O., Cloning and characterization of a DNA fragment that confers sulfonamide resistance in a serogroup B, serotype 15 strain of Neisseria meningitidis, Antimicrob. Agents Chemother. 34 (1990) 2277-2279 [PubMed].
  24. Lopez P., Espinosa M., Greenberg B., Lacks S.A., Sulfonamide resistance in Streptococcus pneumoniae: DNA sequence of the gene encoding dihydropteroate synthase and characterization of the enzyme, J. Bacteriol. 169 (1987) 4320-4326 [PubMed].
  25. Marshall B., Petrowski D., Levy S.B., Inter and intraspecies spread of Escherichia coli in a farm environment in the absence of antibiotic usage, Proc. Natl. Acad. Sci. USA 87 (1990) 6609-6613 [CrossRef] [PubMed].
  26. Matthews D.A., Bolin J.T., Burridge J.M., Filman D.J., Volz K.W., Kraut J., Dihydrofolate reductase. The stereochemistry of inhibitor selectivity, J. Biol. Chem. 260 (1985) 392-399 [PubMed].
  27. McManus P.S., Antibiotic use in plant disease control, APUA (Alliance for the Prudent Use of Antibiotics) Newsletter 17 (1999) 1-3.
  28. Odensvik K., Sales of antibacterial and antiparasitic agents for veterinary purposes (in Swedish), Svensk Veterinärtidning 52 (2000) 445-448.
  29. Rådström P., Swedberg G., RSF1010 and a conjugative plasmid contain sul2, one of the two known genes for plasmid-borne sulfonamide resistance dihydropteroate synthase, Antimicrob. Agents Chemother. 32 (1988) 1684-1692 [PubMed].
  30. Rådström P., Swedberg G., Sköld O., Genetic analyses of sulfonamide resistance and its dissemination in gram-negative bacteria illustrate new aspects of R plasmid evolution, Antimicrob. Agents Chemother. 35 (1991) 1840-1848 [PubMed].
  31. Rådström P., Fermér C., Kristiansen B.-E., Jenkins A., Sköld O., Swedberg G., Transformational exchanges in the dihydropteroate synthase gene of Neisseria meningitidis: a novel mechanism for acquisition of sulfonamide resistance, J. Bacteriol. 174 (1992) 6386-6393 [PubMed].
  32. Scholz P., Haring V., Wittmann-Liebold B., Ashmann K., Bagdasarian M., Scherzinger E., Complete nucleotide sequence and gene organization of the broad host range plasmid RSF1010, Gene 75 (1989) 271-288 [CrossRef] [PubMed].
  33. Sköld O., R-factor-mediated resistance to sulfonamides by a plasmid-borne drug-resistant dihydropteroate synthase, Antimicrob. Agents Chemother. 9 (1976) 49-54 [PubMed].
  34. Sköld O., Sulfonamide resistance: mechanisms and trends, Drug Res. Updates 3 (2000) 155-160.
  35. Sköld O., Widh A., A new dihydrofolate reductase with low trimethoprim sensitivity induced by an R-factor mediating high resistance to trimethoprim, J. Biol. Chem. 249 (1974) 4324-4325 [PubMed].
  36. Sundin G.W., Bender C.L., Dissemination of the strA-strB streptomycin resistance genes among commensal and pathogenic bacteria from humans, animals and plants, Mol. Ecol. 5 (1996) 133-143 [PubMed].
  37. Sundström L., Rådström P., Swedberg G., Sköld O., Site-specific recombination promotes linkage between trimethoprim- and sulfonamide-resistance genes. Sequence characterization of dfr5 and sul1 and a recombination active locus of Tn21, Mol. Gen. Genet. 213 (1988) 191-201 [CrossRef] [PubMed].
  38. Sundström L., Jansson C., Bremer K., Heikkilä E., Olsson-Liljequist B., Sköld O., A new dhfrVIII trimethoprim resistance gene, flanked by IS26, whose product is remote from other dihydrofolate reductases in parsimony analysis, Gene 154 (1995) 7-14 [CrossRef] [PubMed].
  39. Swaney S.M., Aoki H., Ganoza M.C., Shinabarger D.L., The oxazolidinone linezolid inhibits initiation of protein synthesis in bacteria, Antimicrob. Agents Chemother. 42 (1998) 3251-3255 [PubMed].
  40. Swedberg G., Sköld O., Plasmid-borne sulfonamide resistance determinants studied by restriction enzyme analysis, J. Bacteriol. 153 (1983) 1228-1237 [PubMed].
  41. Swedberg G., Castensson S., Sköld O., Characterization of mutationally altered dihydropteroate synthase and its ability to form a sulfonamide-containing dihydrofolate analog, J. Bacteriol. 137 (1979) 129-136 [PubMed].
  42. Swedberg G., Fermér C., Sköld O., Point mutations in the dihydropteroate synthase gene causing sulfonamide resistance, Adv. Exp. Med. Biol. 338 (1993) 555-558 [PubMed].
  43. Swedberg G., Ringertz S., Sköld O., Sulfonamide resistance in Streptococcus pyogenes is associated with differences in the amino acid sequence of its chromosomal dihydropteroate synthase, Antimicrob. Agents Chemother. 42 (1998) 1062-1069 [PubMed].
  44. Swift G., Mc.Carthy B.J., Heffron F., DNA sequence of a plasmid-encoded dihydrofolate reductase, Mol. Gen. Genet. 181 (1981) 441-447 [CrossRef] [PubMed].
  45. Van Treeck U.F., Schmidt F., Wiedemann B., Molecular nature of a streptomycin and sulfonamide resistant plasmid (pBP1) prevalent in clinical Escherichia coli strains and integration of an ampicillin resistance transposon (TnA), Antimicrob. Agents Chemother. 19 (1981) 371-380 [PubMed].
  46. Wise E.M. Jr., Abou-Donia M.M., Sulfonamide resistance mechanism in Escherichia coli: R-plasmids can determine sulfonamide-resistant dihydropteroate synthases, Proc. Natl. Acad. Sci. USA 72 (1975) 2621-2625 [CrossRef] [PubMed].