Evidence of Bartonella sp. in questing adult and nymphal Ixodes ricinus ticks from France and co-infection with Borrelia burgdorferi sensu lato and Babesia sp.

Lénaïg HALOS, Taoufik JAMAL, Renaud MAILLARD, Frederic BEUGNET, Arnaud LE MENACH, Henri-Jean BOULOUIS, Muriel VAYSSIER-TAUSSAT*

a UMR 956 INRA/AFSSA/ENVA/UVPM, Microbiologie, École Nationale Vétérinaire, 7 avenue du Général de Gaulle, 94 700 Maisons-Alfort, France
b Unité de pathologie du bétail, École Nationale Vétérinaire, 7 avenue du Général de Gaulle, 94700 Maisons-Alfort, France
c Merial Europe, 29 avenue T. Garnier, 69007 Lyon, France
d INSERM U444, Hôpital Saint-Antoine, 27 rue Chaligny, 75571 Paris Cedex 12, France

(Received 25 May 2004; accepted 10 August 2004)

Abstract – Ticks are known vectors for a wide range of pathogenic microorganisms. Their role in the transmission of some others is so far only suspected. Ticks can transmit multiple pathogens, however, little is known about the co-existence of these pathogens within questing ticks. We looked for the presence of DNA from three micro-organisms, Bartonella sp., Borrelia burgdorferi sensu lato and Babesia sp. which are known or suspected tick-borne pathogens, using a cohort of 92 questing Ixodes ricinus ticks collected from pastures in northern France. DNA was extracted from each individual tick and the presence of the three pathogens was investigated using Polymerase Chain Reaction (PCR) amplification. Nine among 92 samples (9.8%) demonstrated PCR products using Bartonella specific primers, 3 among 92 (3.3%) using Borrelia burgdorferi sensu lato specific primers and 19 among 92 (20.6%) using Babesia specific primers. Seven among 92 samples (7.6%) were PCR positive for at least two of the pathogens and one sample was positive for all three. Adult ticks (12/18; 67%) showed significantly higher infection rates compared to nymphs (11/74; 15%) for all three pathogens (P < 0.001). This study is the demonstration of the simultaneous presence of Bartonella sp., Borrelia burgdorferi sensu lato and Babesia sp. in questing Ixodes ricinus ticks.

questing ticks / co-infection / PCR detection

1. INTRODUCTION

Tick-borne diseases are of great medical and veterinary importance [41]. Ticks can transmit a large spectrum of pathogens including bacteria, viruses and parasites with a significant number of these pathogens being agents of emerging infectious diseases.

Bartonella species are emerging arthropod-borne pathogens that cause severe disease in humans and animals [1, 7]. They have been detected in diverse mammalian
hosts such as cats, dogs, rodents, and most recently in ruminants [7, 10, 14]. B. bacilliformis is known to be transmitted by the sand fly [1], B. quintana by the human body louse [28] and B. henselae by the cat flea [13]. The vector involved in transmission of Bartonella in ruminants remains unknown, although ticks have been suspected [11]. Bartonella DNA has been detected in engorged Ixodes sp. in Europe [37, 39] while the presence of DNA from Bartonella species has been demonstrated in questing Ixodes pacificus ticks in California [11]. Furthermore, there are several reports of co-segregation of Bartonella sp. with known tick-borne pathogens [4, 16, 24, 39], emphasising the putative role of ticks in Bartonella transmission. Bartonella DNA has been detected in engorged Ixodes sp. in Europe [37, 39] while the presence of DNA from Bartonella species has been demonstrated in questing Ixodes pacificus ticks in California [11]. Furthermore, there are several reports of co-segregation of Bartonella sp. with known tick-borne pathogens [4, 16, 24, 39], emphasising the putative role of ticks in Bartonella transmission.

Lyme borreliosis is the most significant human vector-borne disease in Europe and the United States [2, 29] which also occurs in cattle [8, 43]. Babesia sp., the causative agents of babesiosis are transmitted by ixodid ticks and are capable of infecting a wide variety of vertebrate hosts including humans and cattle [20]. Co-infections of Borrelia burgdorferi sensu lato with Bartonella henselae have been found in patients presenting symptoms of atypical neuroborreliosis [16, 35] while mice have been found to be naturally co-infected with Borrelia burgdorferi, Babesia microti and a novel Bartonella sp. in the USA [21].

Although it is suspected that the Ixodes sp. tick may transmit multiple pathogens [4, 9, 27], limited work has been carried out on co-infection with multiple pathogens in questing ticks. Testing questing ticks is of greater interest than testing engorged ticks, since the identification of bacterial DNA relates to exposure during the previous blood meal before molting, whereas bacterial DNA identified in engorged ticks may only reflect upon the presence of that organism in the blood of the host.

Clinical surveys show that subjects co-infected by several tick-borne pathogens present more severe symptoms and a longer duration of illness [4]. Co-infection rates among human patients with a confirmed tick-borne infection have been reported to be as high as 39% [4]. However, data on the co-segregation of these tick-borne pathogens in ticks is still lacking.

Our goal was to determine the infection rates of Bartonella sp., Borrelia burgdorferi sensu lato and Babesia sp. in a cohort of nymphal and adult questing Ixodes ricinus ticks tested individually using specific Polymerase Chain Reaction (PCR) primer sets, in order to evaluate the potential vector role of Ixodes ricinus for Bartonella sp. and to establish the simultaneous presence of Borrelia burgdorferi and/or Babesia sp. DNA in ticks infected with Bartonella sp.

2. MATERIALS AND METHODS

2.1. Tick samples

This study was conducted on 94 questing Ixodes ricinus ticks including 76 nymphs, and 18 adults (9 males and 9 females) collected by flagging two neighbouring pastures during the spring of 2002 in the north of France (Lille area). Each sample was kept individually in absolute ethanol immediately after collection. Prior to extraction, the ticks were taxonomically classified. Each tick was treated individually.

2.2. DNA extraction

The ticks were crushed by shaking with a bead beater (mixer mill MM301, Qiagen, Hilden, Germany) and DNA was extracted
as previously described [19]. The efficiency (100%) of DNA extraction was confirmed for 92 *Ixodes ricinus* samples by PCR amplification of the 16S mitochondrial gene using tick-specific primers. Two nymphal samples, for which no amplification products were obtained, were excluded from the study.

2.3. PCR amplification

All PCR reactions were performed in a Genamp thermocycler (Applied biosystem, Courtabœuf, France). Each reaction was carried out in 50 µL volume containing 0.5 µmol/µL of each primer, 2.5 mM of each dNTP, 5 µL of 10X PCR buffer, 1 U of *Taq* DNA polymerase (Takara biomedical group, Shiga, Japan) and 5 µL of the DNA extract. Negative (sterile water) and positive controls were included in each experiment.

The efficiency of tick DNA extraction was evaluated by amplification of a fragment of the tick mitochondrial 16S rRNA gene (ribosomal DNA [rDNA]) using tick-specific primers [6]. The presence of *Borrelia burgdorferi* sensu lato, *Bartonella* sp. or *Babesia* sp. DNA in tick DNA extracts was tested by PCR using specific primers for each of the pathogens [32–34, 39]. The primer sets used in this study and PCR conditions are listed in Table I.

DNA electrophoresis was carried out in 2% agarose gels containing ethidium bromide, and DNA fragments were visualised under ultraviolet light. Each reaction was performed at least twice.

2.4. Sequencing and sequence analysis

All amplified fragments using *Bartonella* sp. primers were sent for sequencing to GENOMEXPRESS (Meylan, France). The DNA amount was sufficient to allow sequencing for one of the nine *Bartonella*-positive samples. The sequence, derived from this sample, was compared with known sequences listed in the GenBank nucleotide sequence databases. The BLAST search option of the National Center for Biotechnology Information (NCBI) (internet site http://www.ncbi.nlm.nih.gov) was used to confirm the origin of the sequence.

2.5. Statistical analysis

Chi-square for trends and the Fisher exact test for dichotomous variables were performed on Epi-Info version 3.2 (CDC, Atlanta, GA, USA) and SAS/stat® (version 8.02) softwares. *P* < 0.05 was regarded as significant.

3. RESULTS

3.1. Specific detection of *Bartonella* sp. DNA in questing *Ixodes ricinus* ticks

Amongst the 92 samples, 9 (9.8%), including 6 adults (33% of the adult ticks) and 3 nymphs (4% of the nymphs) showed an amplified fragment of the expected size for specific amplification of the *Bartonella* *gltA* gene (Tab. II). Sequence analysis of the fragment obtained from 1 adult sample (registered in Genbank under the accession number: AY568725) showed 96% identity with the *gltA* gene of *B. schoenbuschensis* (Genbank accession number: AJ564633). Adult ticks were significantly (*P* = 0.0015) more likely to be infected than nymphs (Tab. II).

3.2. Specific detection of *Borrelia burgdorferi* sensu lato and *Babesia* sp. DNA in ticks

Visualisation of a 170 bp. amplified fragment of *B. burgdorferi* sensu lato 23S-5S spacer region was obtained for 3 (3.3%) of the 92 samples, of which 2 were adult ticks (11% of the adult ticks) and one was a nymph (1.3% of the nymphs) (Tab. II). No statistically significant difference was detected in prevalence of infection between the adults and nymphs.

Amongst the 92 samples, 19 samples (20.6%), including 10 adults (56% of the adult ticks) and 9 nymphs (12% of the
Table I. Oligonucleotide primers used in this study.

<table>
<thead>
<tr>
<th>Organism</th>
<th>Template</th>
<th>Primer sequences 5’-3’</th>
<th>Product size bp</th>
<th>Targeted gene</th>
<th>PCR conditions</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tick</td>
<td>TQ16S+1F</td>
<td>F CTGCTCAATGATTTTTTAAATTGTGG</td>
<td>320</td>
<td>ADNr 16S mitochondrial</td>
<td>Denaturation: 94 °C 8 min Hybridization: 10 cycles: 92 °C 1 min, 48 °C 1 min, 72 °C 1 min 30 s 32 cycles 92 °C 1 min, 54 °C 1 min, 72 °C 1 min 30 s Extension: 72 °C 10 min</td>
<td>[6, 19]</td>
</tr>
<tr>
<td>Bartonella sp.</td>
<td>TQ16S-2R</td>
<td>R ACGCTGTTATCCCTAGAG</td>
<td>356</td>
<td>Citrate synthase</td>
<td>Denaturation: 90 °C 8 min Hybridization: 35 cycles 93 °C 20 s, 54 °C 30 s, 72 °C 30 s Extension: 72 °C 5 min</td>
<td>[32]</td>
</tr>
<tr>
<td>Borrelia burgdorferi sensu lato</td>
<td>1137</td>
<td>R AATGCAAAAAGAACAGTAAACA</td>
<td>226</td>
<td>23S-5S spacer</td>
<td>Denaturation: 95 °C 8 min Hybridization: 30 cycles 94 °C 1 min, 50 °C 1 min, 72 °C 1 min Extension: 72 °C 5 min</td>
<td>[39]</td>
</tr>
<tr>
<td>Babesia sp. Set 1</td>
<td>23SN2</td>
<td>R ACCATAGACTCTTTAATCTTTGACCA</td>
<td>170</td>
<td>18S Small sub-unit ribosomal DNA</td>
<td>Denaturation: 95 °C 8 min Hybridization: 30 cycles 94 °C 1 min, 52 °C 1 min, 72 °C 1 min Extension: 72 °C 10 min</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>BORV Rigs</td>
<td>F AATACCAATCTTTGACACAGGG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Babesia sp. Set 2</td>
<td>PIRO A</td>
<td>R AATACCAATCTTTGACACAGGG</td>
<td>408</td>
<td>18S Small 18S sub-unit ribosomal DNA</td>
<td>Denaturation: 95 °C 8 min Hybridization: 30 cycles 94 °C 1 min, 52 °C 1 min, 72 °C 1 min Extension: 72 °C 10 min</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>bab1</td>
<td>F CTTAGTATAAAGCTTTTATAAGCC</td>
<td>230</td>
<td>18S Small sub-unit ribosomal DNA</td>
<td>Denaturation: 94 °C 1 min Hybridization: 5 cycles 94 °C 1 min, 49 °C 1 min, 72 °C 1 min 30 cycles 94 °C 1 min, 53 °C 1 min, 72 °C 1 min Extension: 72 °C 10 min</td>
<td>[34]</td>
</tr>
<tr>
<td></td>
<td>bab4</td>
<td>R ATAGGTCAAGAACTTTGAATGATA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table II. Number of samples from 92 questing *Ixodes ricinus* ticks showing specific PCR amplification of the gene of the citrate-synthase (*gltA*) of *Bartonella* sp., the 23S-5S spacer of *Borrelia burgdorferi* sensu lato or the gene of the small ribosomal sub-unit (SS-rDNA) of *Babesia* sp. and number of samples showing simultaneous specific PCR amplification of 2 or 3 of the targeted micro-organisms.

<table>
<thead>
<tr>
<th>Ixodes ricinus samples</th>
<th>Detection of pathogen DNA</th>
<th>Co-detection of pathogen DNA</th>
<th>Number of co-infected ticks / number of infected ticks (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bartonella sp.</td>
<td>Babesia sp.</td>
<td>Borrelia burgdorferi s.l.</td>
</tr>
<tr>
<td>Females</td>
<td>3/9 (33)</td>
<td>6/9 (67)</td>
<td>1/9 (11)</td>
</tr>
<tr>
<td>Males</td>
<td>3/9 (33)</td>
<td>4/9 (44)</td>
<td>1/9 (11)</td>
</tr>
<tr>
<td>Nymphs</td>
<td>3/74 (4)</td>
<td>9/74 (12)</td>
<td>1/74 (1.3)</td>
</tr>
<tr>
<td>Total</td>
<td>9/92 (9.8)</td>
<td>19/92 (20.6)</td>
<td>3/92 (3.3)</td>
</tr>
</tbody>
</table>
nymphs), showed a 400 bp amplified fragment of Babesia sp. SS-rDNA gene using a first set of primers. The presence of bae-
sial DNA in the sample was further con-
ﬁrmed by a second PCR ampliﬁcation of a
230 bp fragment of the SS-rDNA gene using
a second set of Babesia sp. primers (set 2,
Tab. I). All 19 positive samples showed an
ampliﬁed fragment of the expected size
(Tab. II). Adult ticks were almost ten times
more likely to be PCR positive for Babesia
dNA than nymphs (Odds ratio: 9.03; 95%
conﬁdence intervals: 2.42–33.69; P < 0.001).
Overall, 7 (7.6 %) of the ticks were found
to be co-infected with at least two patho-
gens, accounting for 30% of the 23 infected
ticks (Tab. II). Among the three Borrelia
burgdorferi sensu lato positive samples, all
were co-infected. The positive nymph was
also found to be PCR positive for Bartonella
sp., one of the two positive adult
ticks was also found to be PCR-positive for
Babesia sp. and the second one was also
positive for the two other agents tested
(Tab. II). Among the 19 Babesia sp. positive
samples, three adults and one nymph were
also found to be PCR positive for Bartonella
while one adult was PCR positive for Bor-
relia burgdorferi sensu lato (Tab. II). Among
the adult ticks, the prevalence of co-infection
was higher in female ticks (4/9; 44%) than in male ticks (1/9; 11%), but that dif-
fERENCE was not statistically signiﬁcant.

4. DISCUSSION

The present study provided evidence for
the common co-existence of various tick-
borne pathogens in Ixodid ticks and for the
ﬁrst time, the simultaneous presence of Bart-
onella sp., Borrelia burgdorferi sensu lato and Babesia sp. DNA in the same tick.

Our study conﬁrmed the presence of Bart-
onella sp. DNA in European questing ticks
since 9.8% of the samples were found to be
positive by PCR for Bartonella sp. support-
ing the hypothesis that Bartonella bacteria
can be carried by ticks. The partial sequence
of the citrate-synthase (gltA) gene obtained
from one sample was related to Bartonella
schoenbuschensis (96% similarity) which
infects the roe-deer (Capreolus capreolus)
in Europe [14]. The presence of Bartonella
in ruminant blood at very high infection lev-
els has been previously reported [10]. Since
the DNA of ruminant-related Bartonella
species has already been detected in Ixodid
ticks, they have been suspected to be a
potential source of infection for ruminants
[11, 39]. Considering that Ixodes ticks feed
once per stage, the presence of Bartonella
in questing ticks at different developmental
stages would suggest the possibility of trans-
stadial transmission of these bacteria, poten-
tially related to transmission to mammalian
hosts.

The analysis of the same tick cohort for
co-infection with other pathogens revealed
that 3.3% of the ticks were PCR positive for
Borrelia burgdorferi sensu lato and 20.6%
for Babesia sp. The prevalence of 3.3% of
B. burgdorferi sensu lato PCR-positive ticks
is relatively low compared with other stud-
ies probably due to the ecological habitat
from where the samples were collected.
Reported prevalences of B. burgdorferi
sensu lato in ticks vary from 1.3% in Swit-
zerland [5] to 55% in areas of Finland [23]
with an average between 10 and 20% [9, 22,
29, 36]. Here, we investigated a tick popu-
lation living on pastures. Since reservoirs
for Lyme borreliosis are often forest living
rodents, the prevalence of Lyme spirochetes
is naturally higher in wood or fields near
wood areas than in pastures [18, 38]. How-
ever, the presence of Borrelia burgdorferi
sensu lato DNA in ticks collected on pas-
tures strongly suggests that the risk for bor-
reliosis is not limited to decidual forest areas.

Twenty-one percent of questing Ixodes
ricinus ticks were PCR positive for Babesia
sp., which correlates with infection rates
described in other studies: between 6.2%
and 62% of babesial infection in questing
[3, 15], or engorged ticks [17]. Although the
particular species of Babesia was not deter-
mined by sequencing, we confirmed that
Pathogen co-infection in Ixodes ricinus

the amplification was specific to Babesia sp. by using two different sets of primers which were described to be specific to the Babesia genus [33, 34].

Interestingly, adult ticks showed significantly higher infection rates compared to nymphs for all three pathogens. Previous studies have already shown different ranges of prevalence between adults and nymphs, for Borrelia burgdorferi [9, 22], for Babesia sp. [26] and Bartonella sp. [12]. One hypothesis explaining this difference is the number of potentially infected meals which is higher for adults than for nymphs (two blood meals for adults versus one for nymphs). This could either be related to the existence of stage-specific factors, favouring the acquisition of the pathogen by the tick at a special stage as previously shown for other vector arthropods such as tsetse flies [31]. It is noteworthy that despite the lack of a statistically significant difference in infection rates between males and females for any of the targeted pathogens, females were co-infected more often (44%) than males (11%).

Up to 7.6% of the ticks were co-infected with at least two pathogens and 30% of the infected ticks were co-infected (Tab. II). Borrelia burgdorferi and Bartonella sp. have already been simultaneously detected in ticks collected on wild ruminants [39] whereas the coexistence of DNA of Borrelia burgdorferi sensu lato and Babesia microti in Ixodes ricinus ticks showed rates ranging from 2% to 19% [4, 40]. Our results emphasise the fact that the co-existence of pathogens is not a rare event in ticks. This co-existence appears to be linked with co-segregations or co-infections in mammals including humans [4, 16, 21, 27, 30, 42]. An increasing number of studies suggest that symptoms attributed to one tick-borne disease are not due to a single pathogen [25]. For example, patients with ongoing symptoms attributed to chronic Lyme disease have been shown to be co-infected with Bartonella sp. [16, 35] or Babesia sp. and Ehrlichia sp. [25]. Immunoserologic evidence of co-infection with B. burgdorferi sensu lato and Babesia sp. among individuals in tick-endemic areas is also well documented [27, 30].

This study confirms the fact that the co-existence of Bartonella sp. and/or Babesia sp. and/or Borrelia burgdorferi sensu lato, occurs in ticks. Factors affecting tick co-infections and the risk to humans posed by such co-infections in terms of therapy will need further studies.

ACKNOWLEDGMENTS

We are grateful to Prof. Bruno Chomel and Dr. Maria Mavris for critical review, and stimulating discussion. We thank Cédric Trottet and Benjamin Girard for their excellent technical assistance, Stéphanie Akardjoudje and Arnaud Cossart for harvesting ticks, Dr Benoît Jauhlac and Pascal Boireau for having kindly provided Borrelia and Babesia DNA. This work was supported by the Institut National de la Recherche Agronomique and Mérial.

REFERENCES

pathogen co-infection in *Ixodes ricinus* 87

